|
@@ -1,877 +0,0 @@
|
|
|
-#include "NvInfer.h"
|
|
|
-#include "cuda_runtime_api.h"
|
|
|
-#include <fstream>
|
|
|
-#include <iostream>
|
|
|
-#include <map>
|
|
|
-#include <sstream>
|
|
|
-#include <vector>
|
|
|
-#include <chrono>
|
|
|
-#include <cmath>
|
|
|
-#include <cassert>
|
|
|
-#include <algorithm>
|
|
|
-
|
|
|
-
|
|
|
-#include<opencv2/core/core.hpp>
|
|
|
-#include<opencv2/highgui/highgui.hpp>
|
|
|
-#include <opencv2/opencv.hpp>
|
|
|
-
|
|
|
-#include "modulecomm.h"
|
|
|
-#include "xmlparam.h"
|
|
|
-#include "ivfault.h"
|
|
|
-#include "ivlog.h"
|
|
|
-#include "ivexit.h"
|
|
|
-#include "ivversion.h"
|
|
|
-#include "rawpic.pb.h"
|
|
|
-#include "lightarray.pb.h"
|
|
|
-#include "brainstate.pb.h"
|
|
|
-#include <QCoreApplication>
|
|
|
-#include <thread>
|
|
|
-#include "opencv2/imgcodecs/legacy/constants_c.h"
|
|
|
-#include "qmutex.h"
|
|
|
-#include "condition_variable"
|
|
|
-#include "imageBuffer.h"
|
|
|
-#include "detect_obstacle.h"
|
|
|
-
|
|
|
-// onnx转换头文件
|
|
|
-#include "NvOnnxParser.h"
|
|
|
-using namespace nvonnxparser;
|
|
|
-using namespace nvinfer1;
|
|
|
-using namespace std;
|
|
|
-
|
|
|
-//全局变量
|
|
|
-struct Detection {
|
|
|
- //center_x center_y w h
|
|
|
- float bbox[4];
|
|
|
- float conf; // bbox_conf * cls_conf
|
|
|
- int class_id;
|
|
|
- int index;
|
|
|
-};
|
|
|
-
|
|
|
-struct Bbox {
|
|
|
- int x;
|
|
|
- int y;
|
|
|
- int w;
|
|
|
- int h;
|
|
|
-};
|
|
|
-
|
|
|
-
|
|
|
-float conf_thr = 0.5;
|
|
|
-float nms_thr = 0.4;
|
|
|
-
|
|
|
-const bool calibrationstate = false;
|
|
|
-const bool cropstate = false;
|
|
|
-cv::Range crop_height = cv::Range(40,680);
|
|
|
-cv::Range crop_width = cv::Range(320,960);
|
|
|
-const bool trackstate = true;
|
|
|
-
|
|
|
-// stuff we know about the network and the input/output blobs
|
|
|
-static const int INPUT_H = 640;
|
|
|
-static const int INPUT_W = 640;
|
|
|
-static const int cls_num = 3;
|
|
|
-//不同输入尺寸anchor:960-->56700 | 640-->25200 | 416-->10647 | 320-->6300
|
|
|
-static const int anchor_output_num = 25200;
|
|
|
-static const int OUTPUT_SIZE = 1* anchor_output_num *(cls_num+5); //1000 * sizeof(Detection) / sizeof(float) + 1;
|
|
|
-
|
|
|
-const char* INPUT_BLOB_NAME = "images";
|
|
|
-const char* OUTPUT_BLOB_NAME = "output";
|
|
|
-
|
|
|
-const char* onnx_path = "/home/nvidia/code/modularization/src/detection/yolov5-trt-v2.0/model/yolov5s_640_old+new.onnx"; //onnx path
|
|
|
-const std::string engine_path = "/home/nvidia/code/modularization/src/detection/yolov5-trt-v2.0/model/yolov5s_640_old+new.engine"; // engine path
|
|
|
-IExecutionContext* context;
|
|
|
-ICudaEngine* engine;
|
|
|
-IRuntime* runtime;
|
|
|
-float* prob;
|
|
|
-
|
|
|
-bool test_video = true;
|
|
|
-//string video_path = "v4l2src device=/dev/video0 ! video/x-raw, width=(int)1280, height=(int)720 ! videoconvert ! appsink";
|
|
|
-string video_path = "/home/nvidia/code/modularization/src/detection/yolov5-trt-v2.0/data/camera_test4.mp4";
|
|
|
-
|
|
|
-void * gpcamera;
|
|
|
-string cameraname="image00";
|
|
|
-ConsumerProducerQueue<cv::Mat> * imageBuffer = new ConsumerProducerQueue<cv::Mat>(3,true);
|
|
|
-
|
|
|
-void * gpbrain; //获取红绿灯开启状态
|
|
|
-string brainname = "brainstate";
|
|
|
-bool lightstart = true;
|
|
|
-
|
|
|
-void * gpdetect;
|
|
|
-string detectname = "lightarray"; //检测结果
|
|
|
-
|
|
|
-
|
|
|
-iv::Ivfault *gfault = nullptr;
|
|
|
-iv::Ivlog *givlog = nullptr;
|
|
|
-
|
|
|
-cv::Mat camera_matrix,dist_coe,map1,map2; //标定参数
|
|
|
-float time_read_img = 0.0;
|
|
|
-float time_infer = 0.0;
|
|
|
-int time_num = 0;
|
|
|
-
|
|
|
-#define CHECK(status) \
|
|
|
- do\
|
|
|
- {\
|
|
|
- auto ret = (status);\
|
|
|
- if (ret != 0)\
|
|
|
- {\
|
|
|
- std::cerr << "Cuda failure: " << ret << std::endl;\
|
|
|
- abort();\
|
|
|
- }\
|
|
|
- } while (0)
|
|
|
-
|
|
|
-//static Logger gLogger;
|
|
|
-//构建Logger
|
|
|
-class Logger : public ILogger
|
|
|
-{
|
|
|
- void log(Severity severity, const char* msg) noexcept override
|
|
|
- {
|
|
|
- // suppress info-level messages
|
|
|
- if (severity <= Severity::kWARNING)
|
|
|
- std::cout << msg << std::endl;
|
|
|
- }
|
|
|
-} gLogger;
|
|
|
-
|
|
|
-
|
|
|
-// Creat the engine using only the API and not any parser.
|
|
|
-ICudaEngine* createEngine(unsigned int maxBatchSize, IBuilder* builder, IBuilderConfig* config)
|
|
|
-{
|
|
|
-
|
|
|
- INetworkDefinition* network = builder->createNetworkV2(1U); //此处重点1U为OU就有问题
|
|
|
-
|
|
|
- IParser* parser = createParser(*network, gLogger);
|
|
|
- parser->parseFromFile(onnx_path, static_cast<int32_t>(ILogger::Severity::kWARNING));
|
|
|
- //解析有错误将返回
|
|
|
- for (int32_t i = 0; i < parser->getNbErrors(); ++i) { std::cout << parser->getError(i)->desc() << std::endl; }
|
|
|
- std::cout << "successfully parse the onnx model" << std::endl;
|
|
|
-
|
|
|
- // Build engine
|
|
|
- builder->setMaxBatchSize(maxBatchSize);
|
|
|
- config->setMaxWorkspaceSize(1 << 20);
|
|
|
- //config->setFlag(nvinfer1::BuilderFlag::kFP16); // 设置精度计算
|
|
|
- //config->setFlag(nvinfer1::BuilderFlag::kINT8);
|
|
|
- ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config);
|
|
|
- std::cout << "successfully convert onnx to engine!!! " << std::endl;
|
|
|
-
|
|
|
- //销毁
|
|
|
- network->destroy();
|
|
|
- //parser->destroy();
|
|
|
-
|
|
|
- return engine;
|
|
|
-}
|
|
|
-
|
|
|
-void APIToModel(unsigned int maxBatchSize, IHostMemory** modelStream)
|
|
|
-{
|
|
|
-
|
|
|
- // Create builder
|
|
|
- IBuilder* builder = createInferBuilder(gLogger);
|
|
|
- IBuilderConfig* config = builder->createBuilderConfig();
|
|
|
-
|
|
|
- // Create model to populate the network, then set the outputs and create an engine
|
|
|
- ICudaEngine* engine = createEngine(maxBatchSize, builder, config);
|
|
|
-
|
|
|
- assert(engine != nullptr);
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
- // Serialize the engine
|
|
|
- (*modelStream) = engine->serialize();
|
|
|
- // Close everything down
|
|
|
- engine->destroy();
|
|
|
- builder->destroy();
|
|
|
- config->destroy();
|
|
|
-
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-int get_trtengine() {
|
|
|
-
|
|
|
- IHostMemory* modelStream{ nullptr };
|
|
|
- APIToModel(1, &modelStream);
|
|
|
- assert(modelStream != nullptr);
|
|
|
-
|
|
|
- std::ofstream p(engine_path, std::ios::binary);
|
|
|
- if (!p)
|
|
|
- {
|
|
|
- std::cerr << "could not open plan output file" << std::endl;
|
|
|
- return -1;
|
|
|
- }
|
|
|
- p.write(reinterpret_cast<const char*>(modelStream->data()), modelStream->size());
|
|
|
- modelStream->destroy();
|
|
|
-
|
|
|
- return 0;
|
|
|
-
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-void doInference(IExecutionContext& context, float* input, float* output, int batchSize)
|
|
|
-{
|
|
|
- const ICudaEngine& engine = context.getEngine();
|
|
|
- // Pointers to input and output device buffers to pass to engine.
|
|
|
- // Engine requires exactly IEngine::getNbBindings() number of buffers.
|
|
|
- assert(engine.getNbBindings() == 2);
|
|
|
- void* buffers[2];
|
|
|
- // In order to bind the buffers, we need to know the names of the input and output tensors.
|
|
|
- // Note that indices are guaranteed to be less than IEngine::getNbBindings()
|
|
|
- const int inputIndex = engine.getBindingIndex(INPUT_BLOB_NAME);
|
|
|
- const int outputIndex = engine.getBindingIndex(OUTPUT_BLOB_NAME);
|
|
|
-
|
|
|
- //std::cout<<inputIndex<<" "<<outputIndex<<std::endl;
|
|
|
- //const int inputIndex = 0;
|
|
|
- //const int outputIndex = 1;
|
|
|
- // Create GPU buffers on device
|
|
|
- cudaMalloc(&buffers[inputIndex], batchSize * 3 * INPUT_H * INPUT_W * sizeof(float));
|
|
|
- cudaMalloc(&buffers[outputIndex], batchSize * OUTPUT_SIZE * sizeof(float));
|
|
|
- // Create stream
|
|
|
- cudaStream_t stream;
|
|
|
- CHECK(cudaStreamCreate(&stream));
|
|
|
- // DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host
|
|
|
- CHECK(cudaMemcpyAsync(buffers[inputIndex], input, batchSize * 3 * INPUT_H * INPUT_W * sizeof(float), cudaMemcpyHostToDevice, stream));
|
|
|
- context.enqueue(batchSize, buffers, stream, nullptr);
|
|
|
-
|
|
|
- //std::cout<<buffers[outputIndex+1]<<std::endl;
|
|
|
- CHECK(cudaMemcpyAsync(output, buffers[outputIndex], batchSize * OUTPUT_SIZE * sizeof(float), cudaMemcpyDeviceToHost, stream));
|
|
|
- cudaStreamSynchronize(stream);
|
|
|
- // Release stream and buffers
|
|
|
- cudaStreamDestroy(stream);
|
|
|
- CHECK(cudaFree(buffers[inputIndex]));
|
|
|
- CHECK(cudaFree(buffers[outputIndex]));
|
|
|
-
|
|
|
-}
|
|
|
-
|
|
|
-//加工图片变成拥有batch的输入, tensorrt输入需要的格式,为一个维度
|
|
|
-void ProcessImage(cv::Mat image, float input_data[]) {
|
|
|
- //只处理一张图片,总之结果为一维[batch*3*INPUT_W*INPUT_H]
|
|
|
- //以下代码为投机取巧了
|
|
|
-
|
|
|
- cv::Mat resize_img ;
|
|
|
- cv::resize(image, resize_img, cv::Size(INPUT_W, INPUT_H), 0, 0, cv::INTER_LINEAR);
|
|
|
- std::vector<cv::Mat> InputImage;
|
|
|
-
|
|
|
- InputImage.push_back(resize_img);
|
|
|
- int ImgCount = InputImage.size();
|
|
|
-
|
|
|
- //float input_data[BatchSize * 3 * INPUT_H * INPUT_W];
|
|
|
- for (int b = 0; b < ImgCount; b++) {
|
|
|
- cv::Mat img = InputImage.at(b);
|
|
|
- int w = img.cols;
|
|
|
- int h = img.rows;
|
|
|
- int i = 0;
|
|
|
- for (int row = 0; row < h; ++row) {
|
|
|
- uchar* uc_pixel = img.data + row * img.step;
|
|
|
- for (int col = 0; col < INPUT_W; ++col) {
|
|
|
- input_data[b * 3 * INPUT_H * INPUT_W + i] = (float)uc_pixel[2] / 255.0;
|
|
|
- input_data[b * 3 * INPUT_H * INPUT_W + i + INPUT_H * INPUT_W] = (float)uc_pixel[1] / 255.0;
|
|
|
- input_data[b * 3 * INPUT_H * INPUT_W + i + 2 * INPUT_H * INPUT_W] = (float)uc_pixel[0] / 255.0;
|
|
|
- uc_pixel += 3;
|
|
|
- ++i;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
-}
|
|
|
-
|
|
|
-//********************************************** NMS code **********************************//
|
|
|
-float iou(Bbox box1, Bbox box2) {
|
|
|
-
|
|
|
- int x1 = max(box1.x, box2.x);
|
|
|
- int y1 = max(box1.y, box2.y);
|
|
|
- int x2 = min(box1.x + box1.w, box2.x + box2.w);
|
|
|
- int y2 = min(box1.y + box1.h, box2.y + box2.h);
|
|
|
- int w = max(0, x2 - x1);
|
|
|
- int h = max(0, y2 - y1);
|
|
|
- float over_area = w * h;
|
|
|
- return over_area / (box1.w * box1.h + box2.w * box2.h - over_area);
|
|
|
-}
|
|
|
-
|
|
|
-int get_max_index(vector<Detection> pre_detection) {
|
|
|
- //获得最佳置信度的值,并返回对应的索引值
|
|
|
- int index;
|
|
|
- float conf;
|
|
|
- if (pre_detection.size() > 0) {
|
|
|
- index = 0;
|
|
|
- conf = pre_detection.at(0).conf;
|
|
|
- for (int i = 0; i < pre_detection.size(); i++) {
|
|
|
- if (conf < pre_detection.at(i).conf) {
|
|
|
- index = i;
|
|
|
- conf = pre_detection.at(i).conf;
|
|
|
- }
|
|
|
- }
|
|
|
- return index;
|
|
|
- }
|
|
|
- else {
|
|
|
- return -1;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
-}
|
|
|
-bool judge_in_lst(int index, vector<int> index_lst) {
|
|
|
- //若index在列表index_lst中则返回true,否则返回false
|
|
|
- if (index_lst.size() > 0) {
|
|
|
- for (int i = 0; i < index_lst.size(); i++) {
|
|
|
- if (index == index_lst.at(i)) {
|
|
|
- return true;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- return false;
|
|
|
-}
|
|
|
-vector<int> nms(vector<Detection> pre_detection, float iou_thr)
|
|
|
-{
|
|
|
- /*
|
|
|
- 返回需保存box的pre_detection对应位置索引值
|
|
|
-
|
|
|
- */
|
|
|
- int index;
|
|
|
- vector<Detection> pre_detection_new;
|
|
|
- //Detection det_best;
|
|
|
- Bbox box_best, box;
|
|
|
- float iou_value;
|
|
|
- vector<int> keep_index;
|
|
|
- vector<int> del_index;
|
|
|
- bool keep_bool;
|
|
|
- bool del_bool;
|
|
|
- int rr = 0;
|
|
|
- int zz = 0;
|
|
|
-
|
|
|
- if (pre_detection.size() > 0) {
|
|
|
-
|
|
|
- pre_detection_new.clear();
|
|
|
- // 循环将预测结果建立索引
|
|
|
- for (int i = 0; i < pre_detection.size(); i++) {
|
|
|
- pre_detection.at(i).index = i;
|
|
|
- pre_detection_new.push_back(pre_detection.at(i));
|
|
|
- }
|
|
|
- //循环遍历获得保留box位置索引-相对输入pre_detection位置
|
|
|
- while (pre_detection_new.size() > 0) {
|
|
|
- index = get_max_index(pre_detection_new);
|
|
|
- if (index >= 0) {
|
|
|
- keep_index.push_back(pre_detection_new.at(index).index); //保留索引位置
|
|
|
-
|
|
|
- // 更新最佳保留box
|
|
|
- box_best.x = pre_detection_new.at(index).bbox[0];
|
|
|
- box_best.y = pre_detection_new.at(index).bbox[1];
|
|
|
- box_best.w = pre_detection_new.at(index).bbox[2];
|
|
|
- box_best.h = pre_detection_new.at(index).bbox[3];
|
|
|
-
|
|
|
- for (int j = 0; j < pre_detection.size(); j++) {
|
|
|
- keep_bool = judge_in_lst(pre_detection.at(j).index, keep_index);
|
|
|
- del_bool = judge_in_lst(pre_detection.at(j).index, del_index);
|
|
|
- if ((!keep_bool) && (!del_bool)) { //不在keep_index与del_index才计算iou
|
|
|
- box.x = pre_detection.at(j).bbox[0];
|
|
|
- box.y = pre_detection.at(j).bbox[1];
|
|
|
- box.w = pre_detection.at(j).bbox[2];
|
|
|
- box.h = pre_detection.at(j).bbox[3];
|
|
|
- iou_value = iou(box_best, box);
|
|
|
- if (iou_value > iou_thr) {
|
|
|
- del_index.push_back(j); //记录大于阈值将删除对应的位置
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- }
|
|
|
- //更新pre_detection_new
|
|
|
- pre_detection_new.clear();
|
|
|
- for (int j = 0; j < pre_detection.size(); j++) {
|
|
|
- keep_bool = judge_in_lst(pre_detection.at(j).index, keep_index);
|
|
|
- del_bool = judge_in_lst(pre_detection.at(j).index, del_index);
|
|
|
- if ((!keep_bool) && (!del_bool)) {
|
|
|
- pre_detection_new.push_back(pre_detection.at(j));
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- del_index.clear();
|
|
|
- del_index.shrink_to_fit();
|
|
|
- pre_detection_new.clear();
|
|
|
- pre_detection_new.shrink_to_fit();
|
|
|
-
|
|
|
- return keep_index;
|
|
|
-
|
|
|
-}
|
|
|
-void postprocess(float* prob,vector<Detection> &results,float conf_thr = 0.2, float nms_thr = 0.4) {
|
|
|
- /*
|
|
|
- #####################此函数处理一张图预测结果#########################
|
|
|
- prob为[x y w h score multi-pre] 如80类-->(1,anchor_num,85)
|
|
|
-
|
|
|
- */
|
|
|
-
|
|
|
- vector<Detection> pre_results;
|
|
|
- vector<int> nms_keep_index;
|
|
|
- bool keep_bool;
|
|
|
- Detection pre_res;
|
|
|
- float conf;
|
|
|
- int tmp_idx;
|
|
|
- float tmp_cls_score;
|
|
|
- for (int i = 0; i < anchor_output_num; i++) {
|
|
|
- tmp_idx = i * (cls_num + 5);
|
|
|
- pre_res.bbox[0] = prob[tmp_idx + 0];
|
|
|
- pre_res.bbox[1] = prob[tmp_idx + 1];
|
|
|
- pre_res.bbox[2] = prob[tmp_idx + 2];
|
|
|
- pre_res.bbox[3] = prob[tmp_idx + 3];
|
|
|
- conf = prob[tmp_idx + 4]; //是为目标的置信度
|
|
|
- tmp_cls_score = prob[tmp_idx + 5] * conf;
|
|
|
- pre_res.class_id = 0;
|
|
|
- pre_res.conf = tmp_cls_score;
|
|
|
- for (int j = 1; j < cls_num; j++) {
|
|
|
- tmp_idx = i * (cls_num + 5) + 5 + j; //获得对应类别索引
|
|
|
- if (tmp_cls_score < prob[tmp_idx] * conf)
|
|
|
- {
|
|
|
- tmp_cls_score = prob[tmp_idx] * conf;
|
|
|
- pre_res.class_id = j;
|
|
|
- pre_res.conf = tmp_cls_score;
|
|
|
- }
|
|
|
- }
|
|
|
- if (conf >= conf_thr) {
|
|
|
-
|
|
|
- pre_results.push_back(pre_res);
|
|
|
- }
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- //使用nms
|
|
|
- nms_keep_index=nms(pre_results,nms_thr);
|
|
|
-
|
|
|
- for (int i = 0; i < pre_results.size(); i++) {
|
|
|
- keep_bool = judge_in_lst(i, nms_keep_index);
|
|
|
- if (keep_bool) {
|
|
|
- results.push_back(pre_results.at(i));
|
|
|
- }
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- pre_results.clear();
|
|
|
- pre_results.shrink_to_fit();
|
|
|
- nms_keep_index.clear();
|
|
|
- nms_keep_index.shrink_to_fit();
|
|
|
-
|
|
|
-}
|
|
|
-
|
|
|
-cv::Mat draw_rect(cv::Mat image, vector<Detection> results) {
|
|
|
- /*
|
|
|
- image 为图像
|
|
|
-
|
|
|
- struct Detection {
|
|
|
- float bbox[4]; //center_x center_y w h
|
|
|
- float conf; // 置信度
|
|
|
- int class_id; //类别id
|
|
|
- int index; //可忽略
|
|
|
- };
|
|
|
-
|
|
|
- */
|
|
|
-
|
|
|
- float x;
|
|
|
- float y;
|
|
|
- float w;
|
|
|
- float h;
|
|
|
- string info;
|
|
|
-
|
|
|
- cv::Rect rect;
|
|
|
- for (int i = 0; i < results.size(); i++) {
|
|
|
-
|
|
|
- x = results.at(i).bbox[0];
|
|
|
- y= results.at(i).bbox[1];
|
|
|
- w= results.at(i).bbox[2];
|
|
|
- h=results.at(i).bbox[3];
|
|
|
-
|
|
|
- x = (int)(x - w / 2);
|
|
|
- y = (int)(y - h / 2);
|
|
|
- w = (int)w;
|
|
|
- h = (int)h;
|
|
|
- info = "id:";
|
|
|
- info.append(to_string(results.at(i).class_id));
|
|
|
- info.append(" s:");
|
|
|
- info.append(to_string((int)(results.at(i).conf*100) ) );
|
|
|
- info.append("%");
|
|
|
- rect= cv::Rect(x, y, w, h);
|
|
|
- if(results.at(i).class_id == 0){ // red light
|
|
|
- cv::rectangle(image, rect, cv::Scalar(0, 0, 255), 2, 1, 0);//矩形的两个顶点,两个顶点都包括在矩形内部
|
|
|
- cv::putText(image, info, cv::Point(x, y), cv::FONT_HERSHEY_SIMPLEX, 0.4, cv::Scalar(0, 0, 255), 0.6, 1, false);
|
|
|
- }else if(results.at(i).class_id == 1){ // green light
|
|
|
- cv::rectangle(image, rect, cv::Scalar(0, 255, 0), 2, 1, 0);//矩形的两个顶点,两个顶点都包括在矩形内部
|
|
|
- cv::putText(image, info, cv::Point(x, y), cv::FONT_HERSHEY_SIMPLEX, 0.4, cv::Scalar(0, 255, 0), 0.6, 1, false);
|
|
|
- }else if(results.at(i).class_id == 2){ // yellow light
|
|
|
- cv::rectangle(image, rect, cv::Scalar(0, 255, 255), 2, 1, 0);//矩形的两个顶点,两个顶点都包括在矩形内部
|
|
|
- cv::putText(image, info, cv::Point(x, y), cv::FONT_HERSHEY_SIMPLEX, 0.4, cv::Scalar(0, 255, 255), 0.6, 1, false);
|
|
|
- }else{
|
|
|
- cv::rectangle(image, rect, cv::Scalar(255, 255, 255), 2, 1, 0);//矩形的两个顶点,两个顶点都包括在矩形内部
|
|
|
- cv::putText(image, info, cv::Point(x, y), cv::FONT_HERSHEY_SIMPLEX, 0.4, cv::Scalar(255, 255, 255), 0.6, 1, false);
|
|
|
- }
|
|
|
-
|
|
|
- }
|
|
|
- return image;
|
|
|
-}
|
|
|
-
|
|
|
-bool LoadEngine(const std::string engine_path){
|
|
|
- //加载engine引擎
|
|
|
- char* trtModelStream{ nullptr };
|
|
|
- size_t size{ 0 };
|
|
|
- std::ifstream file(engine_path, std::ios::binary);
|
|
|
- if(!file)
|
|
|
- {
|
|
|
- cout<<engine_path<<" not found!"<<endl;
|
|
|
- return false;
|
|
|
- }
|
|
|
- if (file.good()) {
|
|
|
- file.seekg(0, file.end);
|
|
|
- size = file.tellg();
|
|
|
- file.seekg(0, file.beg);
|
|
|
- trtModelStream = new char[size];
|
|
|
- assert(trtModelStream);
|
|
|
- file.read(trtModelStream, size);
|
|
|
- file.close();
|
|
|
- }
|
|
|
- //反序列为engine,创建context
|
|
|
- runtime = createInferRuntime(gLogger);
|
|
|
- assert(runtime != nullptr);
|
|
|
- engine = runtime->deserializeCudaEngine(trtModelStream, size, nullptr);
|
|
|
- //assert(engine != nullptr);
|
|
|
- if(engine == nullptr)
|
|
|
- return false;
|
|
|
- context = engine->createExecutionContext();
|
|
|
- assert(context != nullptr);
|
|
|
- delete[] trtModelStream;
|
|
|
-
|
|
|
- //在主机上分配页锁定内存
|
|
|
- CHECK(cudaHostAlloc((void **)&prob, OUTPUT_SIZE * sizeof(float), cudaHostAllocDefault));
|
|
|
- return true;
|
|
|
-}
|
|
|
-
|
|
|
-void shareLightMsg(vector<Detection> results)
|
|
|
-{
|
|
|
- iv::vision::Lightarray light_array; //向共享内存传结果
|
|
|
- for (int i = 0; i < results.size(); i++)
|
|
|
- {
|
|
|
- float x = results.at(i).bbox[0];
|
|
|
- float y = results.at(i).bbox[1];
|
|
|
- float w = results.at(i).bbox[2];
|
|
|
- float h = results.at(i).bbox[3];
|
|
|
- /*---------------protobuf----------------*/
|
|
|
- iv::vision::Light *light = light_array.add_light();
|
|
|
- iv::vision::Center light_center;
|
|
|
- light_center.set_x(x);
|
|
|
- light_center.set_y(y);
|
|
|
- light->mutable_center()->CopyFrom(light_center);
|
|
|
- light->set_index(i+1);
|
|
|
- light->set_type(results.at(i).class_id+1);
|
|
|
- }
|
|
|
-
|
|
|
- int size = light_array.ByteSize();
|
|
|
- char * strdata = new char[light_array.ByteSize()];
|
|
|
- if(light_array.SerializeToArray(strdata, size))
|
|
|
- {
|
|
|
- iv::modulecomm::ModuleSendMsg(gpdetect, strdata, size);
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- std::cout<<"light_array serialize error."<<std::endl;
|
|
|
- }
|
|
|
- light_array.Clear();
|
|
|
- delete strdata;
|
|
|
-
|
|
|
- /*--------------------test ParseFromArray-------------------*/
|
|
|
-// iv::vision::Lightarray light_array1;
|
|
|
-// light_array1.ParseFromArray(strdata,size);
|
|
|
-// cout<<"parsefromarray:"<<std::endl;
|
|
|
-// cout<<"light_size:"<<light_array1.light_size()<<endl;
|
|
|
-// for (int i=0;i<light_array1.light_size();i++) {
|
|
|
-// std::cout<<"index:"<<light_array1.light(i).index()<<" type:"
|
|
|
-// <<light_array1.light(i).type()
|
|
|
-// <<std::endl;
|
|
|
-
|
|
|
-// }
|
|
|
-
|
|
|
-}
|
|
|
-
|
|
|
-void infer(cv::Mat img,vector<Detection> &results) {
|
|
|
-
|
|
|
- // 处理图片为固定输出
|
|
|
- auto start = std::chrono::system_clock::now(); //时间函数
|
|
|
- static float data[3 * INPUT_H * INPUT_W];
|
|
|
- ProcessImage(img, data);
|
|
|
- auto end = std::chrono::system_clock::now();
|
|
|
- //time_read_img = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() + time_read_img;
|
|
|
-
|
|
|
- //cout<<"read img time: "<<std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count()<<"ms"<<endl;
|
|
|
-
|
|
|
- //Run inference
|
|
|
- start = std::chrono::system_clock::now(); //时间函数
|
|
|
- //cout<<"doinference"<<endl;
|
|
|
- doInference(*context, data, prob, 1);
|
|
|
- end = std::chrono::system_clock::now();
|
|
|
- //time_infer = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() + time_infer;
|
|
|
- std::cout <<"doinference: "<< std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms" << std::endl;
|
|
|
- postprocess(prob, results, conf_thr, nms_thr);
|
|
|
- //cout << "ok" << endl;
|
|
|
- //time_num++;
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-void exitfunc()
|
|
|
-{
|
|
|
- return;
|
|
|
-}
|
|
|
-
|
|
|
-//读取视频数据
|
|
|
-void ReadFunc(int n)
|
|
|
-{
|
|
|
- cv::VideoCapture cap(video_path);
|
|
|
- if(!cap.isOpened())
|
|
|
- {
|
|
|
- cout<<"camera failed to open"<<endl;
|
|
|
- }
|
|
|
- while(1)
|
|
|
- {
|
|
|
- cv::Mat frame;
|
|
|
- //读视频的时候加上,读摄像头去掉
|
|
|
- if(imageBuffer->isFull())
|
|
|
- {
|
|
|
- continue;
|
|
|
- }
|
|
|
- if(cap.read(frame))
|
|
|
- {
|
|
|
- if(calibrationstate)
|
|
|
- cv::remap(frame,frame,map1,map2,cv::INTER_LINEAR,cv::BORDER_CONSTANT);
|
|
|
- if(cropstate)
|
|
|
- frame = frame(crop_height,crop_width);
|
|
|
- imageBuffer->add(frame);
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- std::this_thread::sleep_for(std::chrono::milliseconds(1));
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-void Listenpic(const char * strdata,const unsigned int nSize,const unsigned int index,const QDateTime * dt,const char * strmemname)
|
|
|
-{
|
|
|
- if(nSize<1000)return;
|
|
|
- iv::vision::rawpic pic;
|
|
|
- if(false == pic.ParseFromArray(strdata,nSize))
|
|
|
- {
|
|
|
- std::cout<<"picview Listenpic fail."<<std::endl;
|
|
|
- return;
|
|
|
- }
|
|
|
- cv::Mat mat(pic.height(),pic.width(),pic.mattype());
|
|
|
- if(pic.type() == 1)
|
|
|
- memcpy(mat.data,pic.picdata().data(),mat.rows*mat.cols*mat.elemSize());
|
|
|
- else
|
|
|
- {
|
|
|
- // mat.release();
|
|
|
- std::vector<unsigned char> buff(pic.picdata().data(),pic.picdata().data() + pic.picdata().size());
|
|
|
- mat = cv::imdecode(buff,cv::IMREAD_COLOR);
|
|
|
- }
|
|
|
- if(calibrationstate)
|
|
|
- cv::remap(mat,mat,map1,map2,cv::INTER_LINEAR,cv::BORDER_CONSTANT);
|
|
|
- if(cropstate)
|
|
|
- mat = mat(crop_height,crop_width);
|
|
|
- imageBuffer->add(mat);
|
|
|
- mat.release();
|
|
|
-}
|
|
|
-
|
|
|
-//从共享内存中获取signal
|
|
|
-void Listensignal(const char * strdata,const unsigned int nSize,const unsigned int index,const QDateTime * dt,const char * strmemname)
|
|
|
-{
|
|
|
- if(nSize<1)return;
|
|
|
- iv::brain::brainstate brain_state;
|
|
|
- if(false == brain_state.ParseFromArray(strdata,nSize))
|
|
|
- {
|
|
|
- std::cout<<"Listen signal fail."<<std::endl;
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- cout<<"brain_state traficlightstart: "<<brain_state.mbtraficlightstart()<<endl;
|
|
|
-
|
|
|
- lightstart = brain_state.mbtraficlightstart();
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-bool comp(const od::TrackingBox &a, const od::TrackingBox &b) {
|
|
|
- return a.id < b.id;
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-int main(int argc, char** argv)
|
|
|
-{
|
|
|
- showversion("yolov5s");
|
|
|
- QCoreApplication a(argc, argv);
|
|
|
-
|
|
|
- gfault = new iv::Ivfault("traffic_light_detection");
|
|
|
- givlog = new iv::Ivlog("traffic_light_detection");
|
|
|
- gfault->SetFaultState(0,0,"yolov5 initialize.");
|
|
|
-
|
|
|
- if(argc==3)
|
|
|
- {
|
|
|
- test_video = (strcmp(argv[1], "true") == 0)?true:false;
|
|
|
- video_path = argv[2];
|
|
|
- }
|
|
|
- if(argc==2)
|
|
|
- {
|
|
|
- test_video = (strcmp(argv[1], "true") == 0)?true:false;
|
|
|
- }
|
|
|
-
|
|
|
- if(test_video)
|
|
|
- std::thread * readthread = new std::thread(ReadFunc,1);
|
|
|
- else
|
|
|
- gpcamera= iv::modulecomm::RegisterRecv(&cameraname[0],Listenpic);
|
|
|
-
|
|
|
-//================================== camera calib init ==========================
|
|
|
- if (calibrationstate)
|
|
|
- {
|
|
|
- cv::FileStorage calib_file("/home/nvidia/code/modularization/src/detection/yolov5-trt-v2.0/yaml/camera_middle_640_360.yaml", cv::FileStorage::READ);
|
|
|
- calib_file["cameraMatrix"]>>camera_matrix;
|
|
|
- calib_file["distCoeffs"]>>dist_coe;
|
|
|
- cv::Mat R = cv::Mat::eye(3, 3, CV_64F);
|
|
|
- cv::Size imgsize=cv::Size(1280,720);
|
|
|
- cv::initUndistortRectifyMap(camera_matrix, dist_coe, R, camera_matrix,imgsize,CV_16SC2,map1,map2);
|
|
|
- }
|
|
|
-//==============================================================================
|
|
|
- if(!LoadEngine(engine_path))
|
|
|
- {
|
|
|
- cout<<"Build engine to "<< engine_path <<endl;
|
|
|
- get_trtengine();
|
|
|
- cout << "Build engine done!"<<endl;
|
|
|
- cout<<"Reload engine from "<< engine_path <<endl;
|
|
|
- LoadEngine(engine_path);
|
|
|
- }
|
|
|
- gpbrain = iv::modulecomm::RegisterRecv(&brainname[0],Listensignal);
|
|
|
- gpdetect = iv::modulecomm::RegisterSend(&detectname[0],10000,1);
|
|
|
- while(1)
|
|
|
- {
|
|
|
- if(lightstart)
|
|
|
- {
|
|
|
- std::cout<<"------start program------"<<std::endl;
|
|
|
- vector<KalmanTracker> trackers_90;
|
|
|
- KalmanTracker::kf_count = 0; // tracking id relies on this, so we have to reset it in each seq.
|
|
|
- int frame_count = 0;
|
|
|
- double waittime = (double)cv::getTickCount();
|
|
|
- while (1)
|
|
|
- {
|
|
|
- if(imageBuffer->isEmpty())
|
|
|
- {
|
|
|
- double waittotal = (double)cv::getTickCount() - waittime;
|
|
|
- double totaltime = waittotal/cv::getTickFrequency();
|
|
|
- if(totaltime>10.0)
|
|
|
- {
|
|
|
- cout<<"Cant't get frame and quit"<<endl;
|
|
|
- lightstart = false;
|
|
|
- cv::destroyAllWindows();
|
|
|
- std::cout<<"------end program------"<<std::endl;
|
|
|
- break;
|
|
|
- }
|
|
|
- cout<<"Wait for frame "<<totaltime<<"s"<<endl;
|
|
|
- continue;
|
|
|
- }
|
|
|
- auto start = std::chrono::system_clock::now(); //时间函数
|
|
|
- cv::Mat frame;
|
|
|
- imageBuffer->consume(frame);
|
|
|
- frame_count++;
|
|
|
- cv::Mat res_img; // result image
|
|
|
- vector<Detection> results;
|
|
|
- vector<Detection>results_track;
|
|
|
-
|
|
|
-//================================== infer ==========================
|
|
|
- infer(frame,results);
|
|
|
-
|
|
|
-//================================== track ==========================
|
|
|
- if (trackstate)
|
|
|
- {
|
|
|
- auto start_track = std::chrono::system_clock::now(); //时间函数
|
|
|
- od::bbox_t bbox_t_90; //转成跟踪格式
|
|
|
- vector<od::bbox_t> outs_90;
|
|
|
- for (int i = 0; i < results.size(); i++)
|
|
|
- {
|
|
|
- bbox_t_90.x = results.at(i).bbox[0];
|
|
|
- bbox_t_90.y = results.at(i).bbox[1];
|
|
|
- bbox_t_90.w = results.at(i).bbox[2];
|
|
|
- bbox_t_90.h = results.at(i).bbox[3];
|
|
|
- bbox_t_90.prob = results.at(i).conf;
|
|
|
- bbox_t_90.obj_id = results.at(i).class_id;
|
|
|
- outs_90.push_back(bbox_t_90);
|
|
|
- }
|
|
|
- vector<od::TrackingBox>track_result_90;
|
|
|
- bool track_flag_90 = od::TrackObstacle(frame_count,trackers_90,outs_90,track_result_90);
|
|
|
-
|
|
|
- //sort(track_result_90.begin(), track_result_90.end(), comp); //track id 本来就是由大到小
|
|
|
-
|
|
|
- for(unsigned int i=0;i < track_result_90.size(); i++)
|
|
|
- {
|
|
|
- Detection obstacle;
|
|
|
- obstacle.bbox[0] = track_result_90[i].box.x;
|
|
|
- obstacle.bbox[1] = track_result_90[i].box.y;
|
|
|
- obstacle.bbox[2] = track_result_90[i].box.width;
|
|
|
- obstacle.bbox[3] = track_result_90[i].box.height;
|
|
|
-
|
|
|
- //cout<<"11111: "<<track_result_90[i].id<<endl;
|
|
|
-
|
|
|
- //通过判断5帧数输出颜色
|
|
|
- vector<int> class_history;
|
|
|
- class_history = track_result_90[i].class_history;
|
|
|
- if(class_history.size()>0)
|
|
|
- {
|
|
|
- vector<int> color_num(3);
|
|
|
- for(int j=0;j<class_history.size();j++)
|
|
|
- {
|
|
|
- int class_id = class_history[j];
|
|
|
- color_num[class_id] += 1;
|
|
|
- }
|
|
|
- std::vector<int>::iterator biggest = std::max_element(std::begin(color_num),std::end(color_num));
|
|
|
- int maxindex = std::distance(std::begin(color_num),biggest);
|
|
|
- obstacle.class_id = maxindex;
|
|
|
- }
|
|
|
- else {obstacle.class_id = track_result_90[i].class_id;}
|
|
|
- obstacle.conf = track_result_90[i].prob;
|
|
|
- results_track.push_back(obstacle);
|
|
|
- }
|
|
|
- auto end_track = std::chrono::system_clock::now(); //时间函数
|
|
|
- //std::cout <<"track: "<< std::chrono::duration_cast<std::chrono::milliseconds>(end_track - start_track).count() << "ms" << std::endl;
|
|
|
-
|
|
|
- }
|
|
|
-//================================== track ==========================
|
|
|
-
|
|
|
- vector<Detection>results_final;
|
|
|
- results_final = (trackstate)?results_track:results;
|
|
|
- shareLightMsg(results_final);
|
|
|
- auto end = std::chrono::system_clock::now(); //时间函数
|
|
|
- std::cout <<"total time traffic: "<< std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms" << std::endl;
|
|
|
-
|
|
|
- //显示检测检测结果
|
|
|
- cv::resize(frame, frame, cv::Size(INPUT_W, INPUT_H), 0, 0, cv::INTER_LINEAR);
|
|
|
- res_img=draw_rect(frame,results_final);
|
|
|
-
|
|
|
- results.clear();
|
|
|
- results_track.clear();
|
|
|
- results_final.clear();
|
|
|
-
|
|
|
- cv::namedWindow("Result",cv::WINDOW_NORMAL);
|
|
|
- cv::imshow("Result",frame);
|
|
|
- if(cv::waitKey(10) == 'q')
|
|
|
- {
|
|
|
- cv::destroyAllWindows();
|
|
|
- //yolo_context->destroy();
|
|
|
- //start_up = false;
|
|
|
- break;
|
|
|
- }
|
|
|
- if(cv::waitKey(1) == 's')
|
|
|
- cv::waitKey(0);
|
|
|
- //writer << frame;
|
|
|
- //waittime = (double)cv::getTickCount();
|
|
|
- if(!lightstart)
|
|
|
- {
|
|
|
- cv::destroyAllWindows();
|
|
|
- //yolo_context->destroy();
|
|
|
- //start_up = false;
|
|
|
- std::cout<<"------end program------"<<std::endl;
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- //else cout<<"Wait for lightstart==true"<<endl;
|
|
|
- }
|
|
|
-
|
|
|
- // Destroy the engine
|
|
|
- context->destroy();
|
|
|
- engine->destroy();
|
|
|
- runtime->destroy();
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|