Your Name 1 tahun lalu
induk
melakukan
c2425f9054
23 mengubah file dengan 0 tambahan dan 3334 penghapusan
  1. 0 114
      src/detection/sign_detection_yolov8/README.md
  2. 0 36
      src/detection/sign_detection_yolov8/include/Hungarian.h
  3. 0 90
      src/detection/sign_detection_yolov8/include/KalmanTracker.h
  4. 0 153
      src/detection/sign_detection_yolov8/include/cpm.hpp
  5. 0 54
      src/detection/sign_detection_yolov8/include/detect_obstacle.h
  6. 0 82
      src/detection/sign_detection_yolov8/include/imageBuffer.h
  7. 0 98
      src/detection/sign_detection_yolov8/include/infer.hpp
  8. 0 75
      src/detection/sign_detection_yolov8/include/yolo.hpp
  9. 0 389
      src/detection/sign_detection_yolov8/main.cpp
  10. 0 37
      src/detection/sign_detection_yolov8/python_trt.py
  11. 0 122
      src/detection/sign_detection_yolov8/signdetect_yolov8.pro
  12. 0 398
      src/detection/sign_detection_yolov8/src/Hungarian.cpp
  13. 0 106
      src/detection/sign_detection_yolov8/src/KalmanTracker.cpp
  14. 0 260
      src/detection/sign_detection_yolov8/src/detect_obstacle.cpp
  15. 0 443
      src/detection/sign_detection_yolov8/src/infer.cu
  16. 0 740
      src/detection/sign_detection_yolov8/src/yolo.cu
  17. 0 50
      src/detection/sign_detection_yolov8/v8_transform.py
  18. 0 12
      src/detection/sign_detection_yolov8/yaml/camera.yaml
  19. 0 12
      src/detection/sign_detection_yolov8/yaml/camera147.yaml
  20. 0 12
      src/detection/sign_detection_yolov8/yaml/camera_middle_640_360.yaml
  21. 0 16
      src/detection/sign_detection_yolov8/yaml/init.yaml
  22. 0 10
      src/detection/sign_detection_yolov8/yaml/pers_ori.yaml
  23. 0 25
      src/detection/sign_detection_yolov8/yaml/sign_config.yaml

+ 0 - 114
src/detection/sign_detection_yolov8/README.md

@@ -1,114 +0,0 @@
-## B站教学视频
-
-https://www.bilibili.com/video/BV1Pa4y1N7HS
-
-## Introduction
-
-- 基于**Tensorrt**加速**Yolov8**,本项目采用**ONNX转Tensorrt**方案
-- 支持**Windows10**和**Linux**
-- 支持**Python/C++**
-
-## YOLOv8
-
-<div align="center">
-<img src="assets/1.png" width=800>
-</div>
-
-## Environment
-
-- **Tensorrt 8.4.3.**
-- **Cuda 11.6 Cudnn 8.4.1**
-- **onnx 1.12.0**
-
-## Quick Start
-
-安装**yolov8**仓库,并下载官方模型。
-
-```
-pip install ultralytics==8.0.5
-pip install onnx==1.12.0
-# download offical weights(".pt" file)
-https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt
-```
-
-使用官方命令**导出ONNX模型**。
-
-```
-yolo mode=export model=yolov8n.pt format=onnx dynamic=False
-```
-
-使用本仓库**v8_transform.py转换官方的ONNX模型**,会自动生成yolov8n.transd.onnx。
-
-```
-python v8_transform.py yolov8n.onnx
-```
-
-将生成的**onnx**模型复制到**tensorrt/bin**文件夹下,使用官方**trtexec**转化onnx模型。**FP32预测删除`--fp16`参数即可**。
-
-```
-trtexec --onnx=yolov8n.transd.onnx --saveEngine=yolov8n_fp16.trt --fp16
-```
-
-## C++
-
-配置**Opencv**、**Tensorrt**环境,具体可参考https://github.com/Monday-Leo/Yolov5_Tensorrt_Win10
-
-打开本仓库的**CMakeLists.txt**,修改**Opencv**、**Tensorrt**路径,之后cmake。
-
-```
-#change to your own path
-##################################################
-set(OpenCV_DIR "E:/opencv/build")  
-set(TRT_DIR "E:/TensorRT-8.4.3.1")  
-##################################################
-```
-
-<div align="center">
-<img src="assets/2.png" width=600>
-</div>
-
-将**预测图片zidane.jpg和模型yolov8n_fp16.trt放入exe文件夹**,直接运行程序,**没有做warmup预测,首次预测时间不准**,想要精确计时请自行修改代码做warmup。**想要修改模型路径和图片路径请修改主程序。**
-
-```
-int main() {
-	std::string img_path = "zidane.jpg";
-	std::string model_path = "yolov8n_fp16.trt";
-	single_inference(img_path,model_path);
-	return 0;
-}
-```
-
-<div align="center">
-<img src="assets/3.jpg" width=600>
-</div>
-
-## Python
-
-在刚才的C++工程中右键yolov8,点击属性,修改为**动态链接库**。
-
-<div align="center">
-<img src="assets/4.png" width=600>
-</div>
-
-将本仓库的**python_trt.py**复制到dll文件夹下。
-
-<div align="center">
-<img src="assets/5.png" width=600>
-</div>
-
-设置模型路径,**dll**路径和想要预测的图片路径,特别注意模型**路径需要加b''**
-
-```
-det = Detector(model_path=b"./yolov8n_fp16.trt",dll_path="./yolov8.dll")  # b'' is needed
-img = cv2.imread("./zidane.jpg")
-```
-
-<div align="center">
-<img src="assets/6.png" width=600>
-</div>
-
-## Reference
-
-https://github.com/ultralytics/ultralytics
-
-https://github.com/shouxieai/infer

+ 0 - 36
src/detection/sign_detection_yolov8/include/Hungarian.h

@@ -1,36 +0,0 @@
-//
-// Created by lqx on 20-4-23.
-//
-
-#ifndef TRACK_SORT_HUNGARIAN_H_H
-#define TRACK_SORT_HUNGARIAN_H_H
-
-#include <iostream>
-#include <vector>
-
-using namespace std;
-
-class HungarianAlgorithm
-{
-public:
-    HungarianAlgorithm();
-    ~HungarianAlgorithm();
-    double Solve(vector<vector<double>>& DistMatrix, vector<int>& Assignment);
-
-private:
-    void assignmentoptimal(int *assignment, double *cost, double *distMatrix, int nOfRows, int nOfColumns);
-    void buildassignmentvector(int *assignment, bool *starMatrix, int nOfRows, int nOfColumns);
-    void computeassignmentcost(int *assignment, double *cost, double *distMatrix, int nOfRows);
-    void step2a(int *assignment, double *distMatrix, bool *starMatrix, bool *newStarMatrix, bool *primeMatrix,
-                bool *coveredColumns, bool *coveredRows, int nOfRows, int nOfColumns, int minDim);
-    void step2b(int *assignment, double *distMatrix, bool *starMatrix, bool *newStarMatrix, bool *primeMatrix,
-                bool *coveredColumns, bool *coveredRows, int nOfRows, int nOfColumns, int minDim);
-    void step3(int *assignment, double *distMatrix, bool *starMatrix, bool *newStarMatrix, bool *primeMatrix,
-               bool *coveredColumns, bool *coveredRows, int nOfRows, int nOfColumns, int minDim);
-    void step4(int *assignment, double *distMatrix, bool *starMatrix, bool *newStarMatrix, bool *primeMatrix,
-               bool *coveredColumns, bool *coveredRows, int nOfRows, int nOfColumns, int minDim, int row, int col);
-    void step5(int *assignment, double *distMatrix, bool *starMatrix, bool *newStarMatrix, bool *primeMatrix,
-               bool *coveredColumns, bool *coveredRows, int nOfRows, int nOfColumns, int minDim);
-};
-
-#endif //TRACK_SORT_HUNGARIAN_H_H

+ 0 - 90
src/detection/sign_detection_yolov8/include/KalmanTracker.h

@@ -1,90 +0,0 @@
-//
-// Created by lqx on 20-4-23.
-//
-
-#ifndef TRACK_SORT_KALMANTRACKER_H
-#define TRACK_SORT_KALMANTRACKER_H
-
-///////////////////////////////////////////////////////////////////////////////
-// KalmanTracker.h: KalmanTracker Class Declaration
-
-#include "opencv2/video/tracking.hpp"
-#include "opencv2/highgui/highgui.hpp"
-
-using namespace std;
-using namespace cv;
-
-#define StateType Rect_<float>
-
-
-// This class represents the internel state of individual tracked objects observed as bounding box.
-class KalmanTracker
-{
-public:
-    KalmanTracker()
-    {
-        init_kf(StateType());
-        m_time_since_update = 0;
-        m_hits = 0;
-        m_hit_streak = 0;
-        m_age = 0;
-        m_id = kf_count;
-        //kf_count++;
-    }
-    KalmanTracker(StateType initRect)
-    {
-        init_kf(initRect);
-        m_time_since_update = 0;
-        m_hits = 0;
-        m_hit_streak = 0;
-        m_age = 0;
-        m_id = kf_count;
-        //kf_count++;
-    }
-
-    KalmanTracker(StateType initRect, int classId,float prob)
-    {
-        init_kf(initRect);
-        m_time_since_update = 0;
-        m_hits = 0;
-        m_hit_streak = 0;
-        m_age = 0;
-        m_id = kf_count;
-        kf_count++;
-        m_class_id = classId;
-        m_prob = prob;
-    }
-
-    ~KalmanTracker()
-    {
-        m_history.clear();
-        m_class_history.clear();
-    }
-
-    StateType predict();
-    void update(StateType stateMat,int classId, float prob);
-
-    StateType get_state();
-    StateType get_rect_xysr(float cx, float cy, float s, float r);
-
-    static int kf_count;
-
-    int m_time_since_update;
-    int m_hits;
-    int m_hit_streak;
-    int m_age;
-    int m_id;
-    int m_class_id;
-    std::vector<int> m_class_history;
-    float m_prob;
-
-private:
-    void init_kf(StateType stateMat);
-
-    cv::KalmanFilter kf;
-    cv::Mat measurement;
-
-    std::vector<StateType> m_history;
-};
-
-#endif //TRACK_SORT_KALMANTRACKER_H

+ 0 - 153
src/detection/sign_detection_yolov8/include/cpm.hpp

@@ -1,153 +0,0 @@
-#ifndef __CPM_HPP__
-#define __CPM_HPP__
-
-// Comsumer Producer Model
-
-#include <algorithm>
-#include <condition_variable>
-#include <future>
-#include <memory>
-#include <queue>
-#include <thread>
-
-namespace cpm {
-
-template <typename Result, typename Input, typename Model>
-class Instance {
- protected:
-  struct Item {
-    Input input;
-    std::shared_ptr<std::promise<Result>> pro;
-  };
-
-  std::condition_variable cond_;
-  std::queue<Item> input_queue_;
-  std::mutex queue_lock_;
-  std::shared_ptr<std::thread> worker_;
-  volatile bool run_ = false;
-  volatile int max_items_processed_ = 0;
-  void *stream_ = nullptr;
-
- public:
-  virtual ~Instance() { stop(); }
-
-  void stop() {
-    run_ = false;
-    cond_.notify_one();
-    {
-      std::unique_lock<std::mutex> l(queue_lock_);
-      while (!input_queue_.empty()) {
-        auto &item = input_queue_.front();
-        if (item.pro) item.pro->set_value(Result());
-        input_queue_.pop();
-      }
-    };
-
-    if (worker_) {
-      worker_->join();
-      worker_.reset();
-    }
-  }
-
-  virtual std::shared_future<Result> commit(const Input &input) {
-    Item item;
-    item.input = input;
-    item.pro.reset(new std::promise<Result>());
-    {
-      std::unique_lock<std::mutex> __lock_(queue_lock_);
-      input_queue_.push(item);
-    }
-    cond_.notify_one();
-    return item.pro->get_future();
-  }
-
-  virtual std::vector<std::shared_future<Result>> commits(const std::vector<Input> &inputs) {
-    std::vector<std::shared_future<Result>> output;
-    {
-      std::unique_lock<std::mutex> __lock_(queue_lock_);
-      for (int i = 0; i < (int)inputs.size(); ++i) {
-        Item item;
-        item.input = inputs[i];
-        item.pro.reset(new std::promise<Result>());
-        output.emplace_back(item.pro->get_future());
-        input_queue_.push(item);
-      }
-    }
-    cond_.notify_one();
-    return output;
-  }
-
-  template <typename LoadMethod>
-  bool start(const LoadMethod &loadmethod, int max_items_processed = 1, void *stream = nullptr) {
-    stop();
-
-    this->stream_ = stream;
-    this->max_items_processed_ = max_items_processed;
-    std::promise<bool> status;
-    worker_ = std::make_shared<std::thread>(&Instance::worker<LoadMethod>, this,
-                                            std::ref(loadmethod), std::ref(status));
-    return status.get_future().get();
-  }
-
- private:
-  template <typename LoadMethod>
-  void worker(const LoadMethod &loadmethod, std::promise<bool> &status) {
-    std::shared_ptr<Model> model = loadmethod();
-    if (model == nullptr) {
-      status.set_value(false);
-      return;
-    }
-
-    run_ = true;
-    status.set_value(true);
-
-    std::vector<Item> fetch_items;
-    std::vector<Input> inputs;
-    while (get_items_and_wait(fetch_items, max_items_processed_)) {
-      inputs.resize(fetch_items.size());
-      std::transform(fetch_items.begin(), fetch_items.end(), inputs.begin(),
-                     [](Item &item) { return item.input; });
-
-      auto ret = model->forwards(inputs, stream_);
-      for (int i = 0; i < (int)fetch_items.size(); ++i) {
-        if (i < (int)ret.size()) {
-          fetch_items[i].pro->set_value(ret[i]);
-        } else {
-          fetch_items[i].pro->set_value(Result());
-        }
-      }
-      inputs.clear();
-      fetch_items.clear();
-    }
-    model.reset();
-    run_ = false;
-  }
-
-  virtual bool get_items_and_wait(std::vector<Item> &fetch_items, int max_size) {
-    std::unique_lock<std::mutex> l(queue_lock_);
-    cond_.wait(l, [&]() { return !run_ || !input_queue_.empty(); });
-
-    if (!run_) return false;
-
-    fetch_items.clear();
-    for (int i = 0; i < max_size && !input_queue_.empty(); ++i) {
-      fetch_items.emplace_back(std::move(input_queue_.front()));
-      input_queue_.pop();
-    }
-    return true;
-  }
-
-  virtual bool get_item_and_wait(Item &fetch_item) {
-    std::unique_lock<std::mutex> l(queue_lock_);
-    cond_.wait(l, [&]() { return !run_ || !input_queue_.empty(); });
-
-    if (!run_) return false;
-
-    fetch_item = std::move(input_queue_.front());
-    input_queue_.pop();
-    return true;
-  }
-};
-};  // namespace cpm
-
-#endif  // __CPM_HPP__

+ 0 - 54
src/detection/sign_detection_yolov8/include/detect_obstacle.h

@@ -1,54 +0,0 @@
-#ifndef DETECT_TURNSTILE_H
-#define DETECT_TURNSTILE_H
-
-#include "Hungarian.h"
-#include "KalmanTracker.h"
-
-namespace od{
-
-const int COLOR_MAP[3][3]={{0, 0, 255},{0, 255, 0},{0,255,255}};
-const int max_age = 3;
-const int min_hits = 3;
-const double iouThreshold = 0.5;
-
-struct bbox_t {
-    unsigned int x, y, w, h;       // (x,y) - top-left corner, (w, h) - width & height of bounded box
-    float prob;                    // confidence - probability that the object was found correctly
-    unsigned int obj_id;           // class of object - from range [0, classes-1]
-    unsigned int track_id;         // tracking id for video (0 - untracked, 1 - inf - tracked object)
-    unsigned int frames_counter;   // counter of frames on which the object was detected
-    float x_3d, y_3d, z_3d;        // center of object (in Meters) if ZED 3D Camera is used
-};
-
-typedef struct TrackingBox
-{
-    int frame;
-    int id;
-    int class_id;
-    float prob;
-    Rect_<float> box;
-    vector<int> class_history;
-}TrackingBox;
-
-//yolo data o DetectBox
-typedef struct DetectBox
-{
-    int class_id;
-    float prob;
-    Rect_<float> box;
-}DetectBox;
-
-//Computes IOU between two bounding boxes
-double GetIOU(Rect_<float> bb_test, Rect_<float> bb_gt);
-//画出检测框和相关信息
-void DrawBoxes(Mat &frame, vector<string> classes, int classId, int turnstileId,float conf, int left, int top, int right, int bottom);
-
-//画出检测结果,image
-void Drawer(Mat &frame, vector<bbox_t> outs, vector<string> classes);
-//画出检测结果,video
-void Drawer(Mat &frame, vector<od::TrackingBox> &track_result, vector<string> &classes);
-//tracking obstacle
-bool TrackObstacle(int frame_count,vector<KalmanTracker> &trackers,vector<bbox_t> &outs,vector<od::TrackingBox> &track_result);
-}
-
-#endif // DETECT_TURNSTILE_H

+ 0 - 82
src/detection/sign_detection_yolov8/include/imageBuffer.h

@@ -1,82 +0,0 @@
-#ifndef IMAGEBUFFER_H
-#define IMAGEBUFFER_H
-
-#include <opencv2/opencv.hpp>
-#include <mutex>
-#include <condition_variable>
-#include <queue>
-template<typename T>
-class ConsumerProducerQueue
-{
-
-public:
-    ConsumerProducerQueue(int mxsz,bool dropFrame) :
-            maxSize(mxsz),dropFrame(dropFrame)
-    { }
-
-    bool add(T request)
-    {
-        std::unique_lock<std::mutex> lock(mutex);
-        if(dropFrame && isFull())
-        {
-            //lock.unlock();
-            //return false;
-            cpq.pop();
-            cpq.push(request);
-            cond.notify_all();
-            return true;
-        }
-        else {
-            cond.wait(lock, [this]() { return !isFull(); });
-            cpq.push(request);
-            //lock.unlock();
-            cond.notify_all();
-            return true;
-        }
-    }
-    void consume(T &request)
-    {
-        std::unique_lock<std::mutex> lock(mutex);
-        cond.wait(lock, [this]()
-        { return !isEmpty(); });
-        request = cpq.front();
-        cpq.pop();
-        //lock.unlock();
-        cond.notify_all();
-
-    }
-
-    bool isFull() const
-    {
-        return cpq.size() >= maxSize;
-    }
-
-    bool isEmpty() const
-    {
-        return cpq.size() == 0;
-    }
-
-    int length() const
-    {
-        return cpq.size();
-    }
-
-    void clear()
-    {
-        std::unique_lock<std::mutex> lock(mutex);
-        while (!isEmpty())
-        {
-            cpq.pop();
-        }
-        lock.unlock();
-        cond.notify_all();
-    }
-
-private:
-    std::condition_variable cond;  //条件变量允许通过通知进而实现线程同步
-    std::mutex mutex;     //提供了多种互斥操作,可以显式避免数据竞争
-    std::queue<T> cpq;    //容器适配器,它给予程序员队列的功能
-    int maxSize;
-    bool dropFrame;
-};
-#endif // IMAGEBUFFER_H

+ 0 - 98
src/detection/sign_detection_yolov8/include/infer.hpp

@@ -1,98 +0,0 @@
-#ifndef __INFER_HPP__
-#define __INFER_HPP__
-
-#include <initializer_list>
-#include <memory>
-#include <string>
-#include <vector>
-
-namespace trt {
-
-#define INFO(...) trt::__log_func(__FILE__, __LINE__, __VA_ARGS__)
-void __log_func(const char *file, int line, const char *fmt, ...);
-
-enum class DType : int { FLOAT = 0, HALF = 1, INT8 = 2, INT32 = 3, BOOL = 4, UINT8 = 5 };
-
-class Timer {
- public:
-  Timer();
-  virtual ~Timer();
-  void start(void *stream = nullptr);
-  float stop(const char *prefix = "Timer", bool print = true);
-
- private:
-  void *start_, *stop_;
-  void *stream_;
-};
-
-class BaseMemory {
- public:
-  BaseMemory() = default;
-  BaseMemory(void *cpu, size_t cpu_bytes, void *gpu, size_t gpu_bytes);
-  virtual ~BaseMemory();
-  virtual void *gpu_realloc(size_t bytes);
-  virtual void *cpu_realloc(size_t bytes);
-  void release_gpu();
-  void release_cpu();
-  void release();
-  inline bool owner_gpu() const { return owner_gpu_; }
-  inline bool owner_cpu() const { return owner_cpu_; }
-  inline size_t cpu_bytes() const { return cpu_bytes_; }
-  inline size_t gpu_bytes() const { return gpu_bytes_; }
-  virtual inline void *get_gpu() const { return gpu_; }
-  virtual inline void *get_cpu() const { return cpu_; }
-  void reference(void *cpu, size_t cpu_bytes, void *gpu, size_t gpu_bytes);
-
- protected:
-  void *cpu_ = nullptr;
-  size_t cpu_bytes_ = 0, cpu_capacity_ = 0;
-  bool owner_cpu_ = true;
-
-  void *gpu_ = nullptr;
-  size_t gpu_bytes_ = 0, gpu_capacity_ = 0;
-  bool owner_gpu_ = true;
-};
-
-template <typename _DT>
-class Memory : public BaseMemory {
- public:
-  Memory() = default;
-  Memory(const Memory &other) = delete;
-  Memory &operator=(const Memory &other) = delete;
-  virtual _DT *gpu(size_t size) { return (_DT *)BaseMemory::gpu_realloc(size * sizeof(_DT)); }
-  virtual _DT *cpu(size_t size) { return (_DT *)BaseMemory::cpu_realloc(size * sizeof(_DT)); }
-
-  inline size_t cpu_size() const { return cpu_bytes_ / sizeof(_DT); }
-  inline size_t gpu_size() const { return gpu_bytes_ / sizeof(_DT); }
-
-  virtual inline _DT *gpu() const { return (_DT *)gpu_; }
-  virtual inline _DT *cpu() const { return (_DT *)cpu_; }
-};
-
-class Infer {
- public:
-  virtual bool forward(const std::vector<void *> &bindings, void *stream = nullptr,
-                       void *input_consum_event = nullptr) = 0;
-  virtual int index(const std::string &name) = 0;
-  virtual std::vector<int> run_dims(const std::string &name) = 0;
-  virtual std::vector<int> run_dims(int ibinding) = 0;
-  virtual std::vector<int> static_dims(const std::string &name) = 0;
-  virtual std::vector<int> static_dims(int ibinding) = 0;
-  virtual int numel(const std::string &name) = 0;
-  virtual int numel(int ibinding) = 0;
-  virtual int num_bindings() = 0;
-  virtual bool is_input(int ibinding) = 0;
-  virtual bool set_run_dims(const std::string &name, const std::vector<int> &dims) = 0;
-  virtual bool set_run_dims(int ibinding, const std::vector<int> &dims) = 0;
-  virtual DType dtype(const std::string &name) = 0;
-  virtual DType dtype(int ibinding) = 0;
-  virtual bool has_dynamic_dim() = 0;
-  virtual void print() = 0;
-};
-
-std::shared_ptr<Infer> load(const std::string &file);
-std::string format_shape(const std::vector<int> &shape);
-
-}  // namespace trt
-
-#endif  // __INFER_HPP__

+ 0 - 75
src/detection/sign_detection_yolov8/include/yolo.hpp

@@ -1,75 +0,0 @@
-#ifndef __YOLO_HPP__
-#define __YOLO_HPP__
-
-#include <future>
-#include <memory>
-#include <string>
-#include <vector>
-
-namespace yolo {
-
-enum class Type : int {
-  V5 = 0,
-  X = 1,
-  V3 = 2,
-  V7 = 3,
-  V8 = 5,
-  V8Seg = 6  // yolov8 instance segmentation
-};
-
-struct InstanceSegmentMap {
-  int width = 0, height = 0;      // width % 8 == 0
-  unsigned char *data = nullptr;  // is width * height memory
-
-  InstanceSegmentMap(int width, int height);
-  virtual ~InstanceSegmentMap();
-};
-
-struct Box {
-  float left, top, right, bottom, confidence;
-  int class_label;
-  std::shared_ptr<InstanceSegmentMap> seg;  // valid only in segment task
-
-  Box() = default;
-  Box(float left, float top, float right, float bottom, float confidence, int class_label)
-      : left(left),
-        top(top),
-        right(right),
-        bottom(bottom),
-        confidence(confidence),
-        class_label(class_label) {}
-};
-
-struct Image {
-  const void *bgrptr = nullptr;
-  int width = 0, height = 0;
-
-  Image() = default;
-  Image(const void *bgrptr, int width, int height) : bgrptr(bgrptr), width(width), height(height) {}
-};
-
-typedef std::vector<Box> BoxArray;
-
-// [Preprocess]: 0.50736 ms
-// [Forward]: 3.96410 ms
-// [BoxDecode]: 0.12016 ms
-// [SegmentDecode]: 0.15610 ms
-class Infer {
- public:
-  virtual BoxArray forward(const Image &image, void *stream = nullptr) = 0;
-  virtual std::vector<BoxArray> forwards(const std::vector<Image> &images,
-                                         void *stream = nullptr) = 0;
-};
-
-std::shared_ptr<Infer> load(const std::string &engine_file, Type type,
-                            float confidence_threshold = 0.25f, float nms_threshold = 0.5f);
-
-Infer *loadraw(const std::string &engine_file, Type type, 
-							float confidence_threshold = 0.25f, float nms_threshold = 0.5f);
-
-const char *type_name(Type type);
-std::tuple<uint8_t, uint8_t, uint8_t> hsv2bgr(float h, float s, float v);
-std::tuple<uint8_t, uint8_t, uint8_t> random_color(int id);
-};  // namespace yolo
-
-#endif  // __YOLO_HPP__

+ 0 - 389
src/detection/sign_detection_yolov8/main.cpp

@@ -1,389 +0,0 @@
-#include <opencv2/opencv.hpp>
-#include "cpm.hpp"
-#include "infer.hpp"
-#include "yolo.hpp"
-
-#include <QCoreApplication>
-#include "modulecomm.h"
-#include "xmlparam.h"
-#include "ivfault.h"
-#include "ivlog.h"
-#include "ivexit.h"
-#include "ivversion.h"
-#include "rawpic.pb.h"
-#include "lightarray.pb.h"
-#include <thread>
-#include "qmutex.h"
-#include "condition_variable"
-#include "imageBuffer.h"
-#include "detect_obstacle.h"
-
-using namespace std;
-
-static const char *cocolabels[] = {"speed10","speed5","left","right","nopassing","park"};
-
-string config_file = "./yaml/sign_config.yaml";
-string engine_path = "./model/sign_yolov8m_new_fp16.trt"; // engine paths
-
-bool imshow_flag = true;
-bool ivlog_flag = false;
-
-float conf_thr = 0.5;
-float nms_thr = 0.4;
-
-bool calibrationstate = false;
-string calibration_yamlpath = "./yaml/camera_middle_640_360.yaml";
-
-bool cropstate = true;
-cv::Range crop_height = cv::Range(0,720);
-cv::Range crop_width = cv::Range(280,1000);
-
-
-bool test_video = false;
-//string video_path = "v4l2src device=/dev/video0 ! video/x-raw, width=(int)1280, height=(int)720 ! videoconvert ! appsink";
-string video_path = "/home/nvidia/code/modularization/src/detection/trafficlight_detection/data/camera_test3.mp4";
-
-//是否开启跟踪
-bool trackstate = true;
-
-//摄像头
-void * gpcamera;
-string cameraname="image00";
-ConsumerProducerQueue<cv::Mat> * imageBuffer =  new ConsumerProducerQueue<cv::Mat>(3,true);
-
-//共享内存
-void * gpdetect;
-string detectname = "signarray";  //检测结果
-
-iv::Ivfault *gfault = nullptr;
-iv::Ivlog *givlog = nullptr;
-
-cv::Mat camera_matrix,dist_coe,map1,map2;  //标定参数
-
-//读取视频数据
-void ReadFunc(int n)
-{
-    cv::VideoCapture cap(video_path);
-    if(!cap.isOpened())
-    {
-        cout<<"camera failed to open"<<endl;
-    }
-    while(1)
-    {
-        cv::Mat frame;
-        //读视频的时候加上,读摄像头去掉
-        if(imageBuffer->isFull())
-        {
-            continue;
-        }
-        if(cap.read(frame))
-        {
-            if(calibrationstate)
-                cv::remap(frame,frame,map1,map2,cv::INTER_LINEAR,cv::BORDER_CONSTANT);
-            if(cropstate)
-                frame = frame(crop_height,crop_width);
-            imageBuffer->add(frame);
-        }
-        else
-        {
-            std::this_thread::sleep_for(std::chrono::milliseconds(1));
-        }
-    }
-}
-void Listenpic(const char * strdata,const unsigned int nSize,const unsigned int index,const QDateTime * dt,const char * strmemname)
-{
-    if(nSize<1000)return;
-    iv::vision::rawpic pic;
-    if(false == pic.ParseFromArray(strdata,nSize))
-    {
-        std::cout<<"picview Listenpic fail."<<std::endl;
-        return;
-    }
-    cv::Mat mat(pic.height(),pic.width(),pic.mattype());
-    if(pic.type() == 1)
-        memcpy(mat.data,pic.picdata().data(),mat.rows*mat.cols*mat.elemSize());
-    else
-    {
-        //     mat.release();
-        std::vector<unsigned char> buff(pic.picdata().data(),pic.picdata().data() + pic.picdata().size());
-        mat = cv::imdecode(buff,cv::IMREAD_COLOR);
-    }
-    if(calibrationstate)
-        cv::remap(mat,mat,map1,map2,cv::INTER_LINEAR,cv::BORDER_CONSTANT);
-    if(cropstate)
-        mat = mat(crop_height,crop_width);
-    imageBuffer->add(mat);
-    mat.release();
-}
-
-void shareSignMsg(vector<yolo::Box> results)
-{
-    iv::vision::Lightarray light_array;   //向共享内存传结果
-    int i=0;
-    for (auto &result : results)
-    {
-        float width = result.right - result.left;
-        float height = result.bottom - result.top;
-        float x = result.left + 0.5*width;
-        float y = result.top + 0.5*height;
-        float w = width;
-        float h = height;
-        /*---------------protobuf----------------*/
-        iv::vision::Light *light = light_array.add_light();
-        iv::vision::Center light_center;
-        light_center.set_x(x);
-        light_center.set_y(y);
-        light->mutable_center()->CopyFrom(light_center);
-        light->set_index(i);
-        i ++;
-        int light_type = result.class_label;
-        light->set_type(light_type);
-        //cout<<"sign label: "<<light_type<<endl;
-        if(ivlog_flag)
-            givlog->verbose("sign label: %d",light_type);
-    }
-
-    int size = light_array.ByteSize();
-    char * strdata = new char[light_array.ByteSize()];
-    if(light_array.SerializeToArray(strdata, size))
-    {
-        iv::modulecomm::ModuleSendMsg(gpdetect, strdata, size);
-    }
-    else
-    {
-        std::cout<<"sign_array serialize error."<<std::endl;
-    }
-    light_array.Clear();
-    //delete strdata;
-
-    /*--------------------test ParseFromArray-------------------*/
-//    iv::vision::Lightarray light_array1;
-//    light_array1.ParseFromArray(strdata,size);
-//    cout<<"parsefromarray:"<<std::endl;
-//    cout<<"light_size:"<<light_array1.light_size()<<endl;
-//    for (int i=0;i<light_array1.light_size();i++) {
-//        std::cout<<"index: "<<light_array1.light(i).index()<<" type: "
-//                <<light_array1.light(i).type()<<" center: "
-//                <<light_array1.light(i).center().x()<<" "
-//                <<light_array1.light(i).center().y()<<std::endl;
-
-//    }
-//    delete strdata;
-}
-
-yolo::Image cvimg(const cv::Mat &image) { return yolo::Image(image.data, image.cols, image.rows); }
-
-int main(int argc, char** argv)
-{
-    showversion("yolov8");
-
-    QCoreApplication a(argc, argv);
-
-    gfault = new iv::Ivfault("sign_detection");
-    givlog = new iv::Ivlog("sign_detection");
-    gfault->SetFaultState(0,0,"yolov8 initialize.");
-
-    cv::FileStorage config(config_file, cv::FileStorage::READ);
-    bool config_isOpened = config.isOpened();
-    //const char* onnx_path_;
-    if(config_isOpened)
-    {
-        engine_path = string(config["model"]["engine_path"]);
-        imshow_flag = (string(config["imshow_flag"]) == "true");
-        ivlog_flag = (string(config["ivlog_flag"]) == "true");
-        test_video = (string(config["test_video"]["open"]) == "true");
-        video_path = string(config["test_video"]["video_path"]);
-        trackstate = (string(config["trackstate"]) == "true");
-        conf_thr = float(config["conf_thr"]);
-        nms_thr = float(config["nms_thr"]);
-        calibrationstate = (string(config["camera"]["calibrationstate"]) == "true");
-        calibration_yamlpath = string(config["camera"]["calibration_yamlpath"]);
-        cropstate = (string(config["camera"]["cropstate"]) == "true");
-        crop_height = cv::Range(int(config["camera"]["crop_height"]["start"]),
-                int(config["camera"]["crop_height"]["end"]));
-
-        crop_width = cv::Range(int(config["camera"]["crop_width"]["start"]),
-                int(config["camera"]["crop_width"]["end"]));
-    }
-    config.release();
-    if(test_video)
-        std::thread * readthread = new std::thread(ReadFunc,1);
-    else
-        gpcamera= iv::modulecomm::RegisterRecv(&cameraname[0],Listenpic);
-
-    //================================== camera calib init ==========================
-    if (calibrationstate)
-    {
-        cv::FileStorage calib_file(calibration_yamlpath, cv::FileStorage::READ);
-        calib_file["cameraMatrix"]>>camera_matrix;
-        calib_file["distCoeffs"]>>dist_coe;
-        cv::Mat R = cv::Mat::eye(3, 3, CV_64F);
-        cv::Size imgsize=cv::Size(1280,720);
-        cv::initUndistortRectifyMap(camera_matrix, dist_coe, R, camera_matrix,imgsize,CV_16SC2,map1,map2);
-    }
-
-    gpdetect = iv::modulecomm::RegisterSend(&detectname[0],10000,1);
-
-    //初始化模型
-    auto yolo = yolo::load(engine_path, yolo::Type::V8, conf_thr, nms_thr);
-    if (yolo == nullptr)
-    {
-
-        std::cout <<"Error: load engine failed,yolo == nullptr"<<std::endl;
-        if(ivlog_flag)
-            givlog->verbose("Error: load engine failed,yolo == nullptr");
-        return 0;
-    }
-
-
-    vector<KalmanTracker> trackers_90;
-    KalmanTracker::kf_count = 0; // tracking id relies on this, so we have to reset it in each seq.
-    int frame_count = 0;
-    double waittime = (double)cv::getTickCount();
-    while (1)
-    {
-        if(imageBuffer->isEmpty())
-        {
-            double waittotal = (double)cv::getTickCount() - waittime;
-            double totaltime = waittotal/cv::getTickFrequency();
-            //                    if(totaltime>10.0)
-            //                    {
-            //                        cout<<"Cant't get frame and quit"<<endl;
-            //                        lightstart = false;
-            //                        cv::destroyAllWindows();
-            //                        std::cout<<"------end program------"<<std::endl;
-            //                        break;
-            //                    }
-            cout<<"Wait for frame "<<totaltime<<"s"<<endl;
-            if(ivlog_flag)
-                givlog->verbose("Wait for frame %f s",totaltime);
-            std::this_thread::sleep_for(std::chrono::milliseconds(10));
-            continue;
-        }        
-        auto start = std::chrono::system_clock::now();  //时间函数
-        cv::Mat frame;
-        imageBuffer->consume(frame);
-        frame_count++;
-        cv::Mat image;
-        frame.copyTo(image);
-        auto objs = yolo->forward(cvimg(image));
-        auto end = std::chrono::system_clock::now();  //时间函数
-
-        std::cout <<"sign detection infer time: "<<
-                    std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count()
-                 << "ms" << std::endl;
-        //================================== track ==========================
-        std::vector<yolo::Box> objs_track;
-        if (trackstate)
-        {
-            auto start_track = std::chrono::system_clock::now();  //时间函数
-            od::bbox_t bbox_t_90;   //转成跟踪格式
-            vector<od::bbox_t> outs_90;
-            for (auto &obj : objs)
-            {
-                //-------------判断标志牌的大小-----------
-                //------------------跟踪是中心点和宽高--------------------
-                float width = obj.right - obj.left;
-                float height = obj.bottom - obj.top;
-                if(width<0 || height<0)
-                {
-                    std::cout<<"Error: bbox width<0 || height<0 "<<std::endl;
-                    if(ivlog_flag)
-                        givlog->verbose("Error: bbox width<0 || height<0 ");
-                    continue;
-                }
-                bbox_t_90.x = obj.left + 0.5*width;
-                bbox_t_90.y = obj.top + 0.5*height;
-                bbox_t_90.w = width;
-                bbox_t_90.h = height;
-                bbox_t_90.prob = obj.confidence;
-                bbox_t_90.obj_id = obj.class_label;
-                outs_90.push_back(bbox_t_90);
-            }
-            vector<od::TrackingBox>track_result_90;
-            bool track_flag_90 = od::TrackObstacle(frame_count,trackers_90,outs_90,track_result_90);
-            //sort(track_result_90.begin(), track_result_90.end(), comp);  //track id 本来就是由大到小
-            for(unsigned int i=0;i < track_result_90.size(); i++)
-            {
-                yolo::Box obstacle;
-                float width = track_result_90[i].box.width;
-                float height = track_result_90[i].box.height;
-                obstacle.left = track_result_90[i].box.x - 0.5*width;
-                obstacle.top = track_result_90[i].box.y - 0.5*height;
-                obstacle.right = track_result_90[i].box.x + 0.5*width;
-                obstacle.bottom = track_result_90[i].box.y + 0.5*height;
-                //cout<<"11111: "<<track_result_90[i].id<<endl;
-                //通过判断10帧数输出最终的结果
-                vector<int> class_history;
-                class_history = track_result_90[i].class_history;
-                if(class_history.size()>0)
-                {
-                    vector<int> color_num(6);
-                    for(int j=0;j<class_history.size();j++)
-                    {
-                        int class_id = class_history[j];
-                        color_num[class_id] += 1;
-                    }
-                    std::vector<int>::iterator biggest = std::max_element(std::begin(color_num),std::end(color_num));
-                    int maxindex = std::distance(std::begin(color_num),biggest);
-                    obstacle.class_label = maxindex;
-                }
-                else {obstacle.class_label = track_result_90[i].class_id;}
-                obstacle.confidence = track_result_90[i].prob;
-                objs_track.push_back(obstacle);
-            }
-            auto end_track = std::chrono::system_clock::now();  //时间函数
-            //std::cout <<"track: "<< std::chrono::duration_cast<std::chrono::milliseconds>(end_track - start_track).count() << "ms" << std::endl;
-
-        }
-        //================================== track ==========================
-
-        vector<yolo::Box>results_final;
-        results_final = (trackstate)?objs_track:objs;
-        shareSignMsg(results_final);
-        auto end_final = std::chrono::system_clock::now();  //时间函数
-        std::cout <<"sign detection total time: "<<
-                    std::chrono::duration_cast<std::chrono::milliseconds>
-                                          (end_final - start).count() << "ms" << std::endl;
-        //将结果可视化
-        for (auto &result : results_final)
-        {
-            uint8_t b, g, r;
-            tie(b, g, r) = yolo::random_color(result.class_label);
-            cv::rectangle(image, cv::Point(result.left, result.top),
-                          cv::Point(result.right, result.bottom),
-                          cv::Scalar(b, g, r), 2);
-
-            auto name = cocolabels[result.class_label];
-            auto caption = cv::format("%s %.2f", name, result.confidence);
-            int width = cv::getTextSize(caption, 0, 1, 2, nullptr).width + 10;
-            cv::rectangle(image, cv::Point(result.left - 3, result.top - 33),
-                          cv::Point(result.left + width, result.top), cv::Scalar(b, g, r), -1);
-            cv::putText(image, caption, cv::Point(result.left, result.top - 5), 0, 1, cv::Scalar::all(0), 2, 16);
-
-        }
-        if (imshow_flag)
-        {
-
-            cv::namedWindow("Result",cv::WINDOW_NORMAL);
-            cv::imshow("Result",image);
-            if(cv::waitKey(10) == 'q')
-            {
-                cv::destroyAllWindows();
-                //yolo_context->destroy();
-                //start_up = false;
-                break;
-            }
-            if(cv::waitKey(1) == 's')
-                cv::waitKey(0);
-        }
-
-        //writer << frame;
-        waittime = (double)cv::getTickCount();
-
-    }
-
-}
-
-
-

+ 0 - 37
src/detection/sign_detection_yolov8/python_trt.py

@@ -1,37 +0,0 @@
-from ctypes import *
-import cv2
-import numpy as np
-import numpy.ctypeslib as npct
-
-class Detector():
-    def __init__(self,model_path,dll_path):
-        self.yolov8 = CDLL(dll_path)
-        self.yolov8.Detect.argtypes = [c_void_p,c_int,c_int,POINTER(c_ubyte),npct.ndpointer(dtype = np.float32, ndim = 2, shape = (100, 6), flags="C_CONTIGUOUS")]
-        self.yolov8.Init.restype = c_void_p
-        self.yolov8.Init.argtypes = [c_void_p]
-        self.c_point = self.yolov8.Init(model_path)
-
-    def predict(self,img):
-        rows, cols = img.shape[0], img.shape[1]
-        res_arr = np.zeros((100,6),dtype=np.float32)
-        self.yolov8.Detect(self.c_point,c_int(rows), c_int(cols), img.ctypes.data_as(POINTER(c_ubyte)),res_arr)
-        self.bbox_array = res_arr[~(res_arr==0).all(1)]
-        return self.bbox_array
-
-def visualize(img,bbox_array):
-    for temp in bbox_array:
-        bbox = [temp[0],temp[1],temp[2],temp[3]]  #xywh
-        cls = int(temp[4])
-        score = temp[5]
-        cv2.rectangle(img,(int(temp[0]),int(temp[1])),(int(temp[0]+temp[2]),int(temp[1]+temp[3])), (105, 237, 249), 2)
-        img = cv2.putText(img, "class:"+str(cls)+" "+str(round(score,2)), (int(temp[0]),int(temp[1])-5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (105, 237, 249), 1)
-    return img
-
-det = Detector(model_path=b"./yolov8n_fp16.trt",dll_path="./yolov8.dll")  # b'' is needed
-img = cv2.imread("./zidane.jpg")
-result = det.predict(img)
-img = visualize(img,result)
-cv2.imshow("img",img)
-cv2.waitKey(0)
-cv2.destroyAllWindows()
-

+ 0 - 122
src/detection/sign_detection_yolov8/signdetect_yolov8.pro

@@ -1,122 +0,0 @@
-QT -= gui
-
-CONFIG += c++11 console
-CONFIG -= app_bundle
-
-# The following define makes your compiler emit warnings if you use
-# any Qt feature that has been marked deprecated (the exact warnings
-# depend on your compiler). Please consult the documentation of the
-# deprecated API in order to know how to port your code away from it.
-DEFINES += QT_DEPRECATED_WARNINGS
-
-# You can also make your code fail to compile if it uses deprecated APIs.
-# In order to do so, uncomment the following line.
-# You can also select to disable deprecated APIs only up to a certain version of Qt.
-#DEFINES += QT_DISABLE_DEPRECATED_BEFORE=0x060000    # disables all the APIs deprecated before Qt 6.0.0
-
-# Default rules for deployment.
-qnx: target.path = /tmp/$${TARGET}/bin
-else: unix:!android: target.path = /opt/$${TARGET}/bin
-!isEmpty(target.path): INSTALLS += target
-
-
-
-SOURCES += main.cpp \
-           src/Hungarian.cpp \
-           src/KalmanTracker.cpp \
-           src/detect_obstacle.cpp\
-           $$PWD/../../include/msgtype/rawpic.pb.cc \
-           $$PWD/../../include/msgtype/lightarray.pb.cc
-
-
-
-INCLUDEPATH += include
-
-HEADERS += include/yolo.hpp \
-           include/infer.hpp \
-           include/cpm.hpp \
-           include/imageBuffer.h \
-           include/Hungarian.h \
-           include/KalmanTracker.h \
-           include/detect_obstacle.h
-
-
-CUDA_SOURCES += src/infer.cu \
-                src/yolo.cu
-
-DISTFILES +=  src/infer.cu \
-              src/yolo.cu
-
-LIBS += -L"/usr/local/lib" \
-        -lprotobuf
-
-# opencv
-INCLUDEPATH += /usr/include/opencv4
-LIBS += /usr/lib/aarch64-linux-gnu/libopencv_*.so
-
-# tensorrt
-LIBS += /usr/lib/aarch64-linux-gnu/libnvinfer.so \
-        /usr/lib/aarch64-linux-gnu/libnvinfer_plugin.so
-# c++
-LIBS += -L/usr/lib/aarch64-linux-gnu -lstdc++fs
-# cuda
-CUDA_SDK = "/usr/local/cuda"   # Path to cuda SDK install
-CUDA_DIR = "/usr/local/cuda"            # Path to cuda toolkit install
-
-
-INCLUDEPATH += ../../../include
-
-
-LIBS +=  $$PWD/../../../bin/libxmlparam.so \
-         $$PWD/../../../bin/libivlog.so \
-         $$PWD/../../../bin/libivfault.so \
-         $$PWD/../../../bin/libmodulecomm.so
-
-!include(../../../include/common.pri ) {
-    error( "Couldn't find the common.pri file!" )
-}
-
-!include(../../../include/ivprotobuf.pri ) {
-    error( "Couldn't find the ivprotobuf.pri file!" )
-}
-!include(../../../include/ivopencv.pri ) {
-    error( "Couldn't find the ivopencv.pri file!" )
-}
-INCLUDEPATH += $$PWD/../../include/msgtype
-LIBS += -L/usr/lib/aarch64-linux-gnu/ -lglog
-
-#####系统类型,计算能力###########
-SYSTEM_NAME = linux         # Depending on your system either 'Win32', 'x64', or 'Win64'
-SYSTEM_TYPE = 64            # '32' or '64', depending on your system
-CUDA_ARCH = sm_72           # Type of CUDA architecture, for example 'compute_10', 'compute_11', 'sm_10'
-NVCC_OPTIONS = --use_fast_math
-
-INCLUDEPATH += $$CUDA_DIR/include
-QMAKE_LIBDIR += $$CUDA_DIR/lib64/
-
-CUDA_OBJECTS_DIR = ./
-
-# Add the necessary libraries
-CUDA_LIBS = -lcuda -lcudart #-lcublas
-
-# The following makes sure all path names (which often include spaces) are put between quotation marks
-CUDA_INC = $$join(INCLUDEPATH,'" -I"','-I"','"')
-LIBS += $$CUDA_LIBS
-
-# Configuration of the Cuda compiler
-CONFIG(debug, debug|release) {
-    # Debug mode
-    cuda_d.input = CUDA_SOURCES
-    cuda_d.output = $$CUDA_OBJECTS_DIR/${QMAKE_FILE_BASE}.o
-    cuda_d.commands = $$CUDA_DIR/bin/nvcc -D_DEBUG $$NVCC_OPTIONS $$CUDA_INC $$NVCC_LIBS --machine $$SYSTEM_TYPE -arch=$$CUDA_ARCH -c -o ${QMAKE_FILE_OUT} ${QMAKE_FILE_NAME}
-    cuda_d.dependency_type = TYPE_C
-    QMAKE_EXTRA_COMPILERS += cuda_d
-}
-else {
-    # Release mode
-    cuda.input = CUDA_SOURCES
-    cuda.output = $$CUDA_OBJECTS_DIR/${QMAKE_FILE_BASE}.o
-    cuda.commands = $$CUDA_DIR/bin/nvcc $$NVCC_OPTIONS $$CUDA_INC $$NVCC_LIBS --machine $$SYSTEM_TYPE -arch=$$CUDA_ARCH -c -o ${QMAKE_FILE_OUT} ${QMAKE_FILE_NAME}
-    cuda.dependency_type = TYPE_C
-    QMAKE_EXTRA_COMPILERS += cuda
-}

+ 0 - 398
src/detection/sign_detection_yolov8/src/Hungarian.cpp

@@ -1,398 +0,0 @@
-//
-// Created by lqx on 20-4-23.
-//
-///////////////////////////////////////////////////////////////////////////////
-// Hungarian.cpp: Implementation file for Class HungarianAlgorithm.
-//
-// This is a C++ wrapper with slight modification of a hungarian algorithm implementation by Markus Buehren.
-// The original implementation is a few mex-functions for use in MATLAB, found here:
-// http://www.mathworks.com/matlabcentral/fileexchange/6543-functions-for-the-rectangular-assignment-problem
-//
-// Both this code and the orignal code are published under the BSD license.
-// by Cong Ma, 2016
-//
-
-#include <math.h>
-#include <cfloat>
-#include "Hungarian.h"
-
-
-HungarianAlgorithm::HungarianAlgorithm(){}
-HungarianAlgorithm::~HungarianAlgorithm(){}
-
-
-//********************************************************//
-// A single function wrapper for solving assignment problem.
-//********************************************************//
-double HungarianAlgorithm::Solve(vector<vector<double>>& DistMatrix, vector<int>& Assignment)
-{
-    unsigned int nRows = DistMatrix.size();
-    unsigned int nCols = DistMatrix[0].size();
-
-    double *distMatrixIn = new double[nRows * nCols];
-    int *assignment = new int[nRows];
-    double cost = 0.0;
-
-    // Fill in the distMatrixIn. Mind the index is "i + nRows * j".
-    // Here the cost matrix of size MxN is defined as a double precision array of N*M elements.
-    // In the solving functions matrices are seen to be saved MATLAB-internally in row-order.
-    // (i.e. the matrix [1 2; 3 4] will be stored as a vector [1 3 2 4], NOT [1 2 3 4]).
-    for (unsigned int i = 0; i < nRows; i++)
-        for (unsigned int j = 0; j < nCols; j++)
-            distMatrixIn[i + nRows * j] = DistMatrix[i][j];
-
-    // call solving function
-    assignmentoptimal(assignment, &cost, distMatrixIn, nRows, nCols);
-
-    Assignment.clear();
-    for (unsigned int r = 0; r < nRows; r++)
-        Assignment.push_back(assignment[r]);
-
-    delete[] distMatrixIn;
-    delete[] assignment;
-    return cost;
-}
-
-
-//********************************************************//
-// Solve optimal solution for assignment problem using Munkres algorithm, also known as Hungarian Algorithm.
-//********************************************************//
-void HungarianAlgorithm::assignmentoptimal(int *assignment, double *cost, double *distMatrixIn, int nOfRows, int nOfColumns)
-{
-    double *distMatrix, *distMatrixTemp, *distMatrixEnd, *columnEnd, value, minValue;
-    bool *coveredColumns, *coveredRows, *starMatrix, *newStarMatrix, *primeMatrix;
-    int nOfElements, minDim, row, col;
-
-    /* initialization */
-    *cost = 0;
-    for (row = 0; row<nOfRows; row++)
-        assignment[row] = -1;
-
-    /* generate working copy of distance Matrix */
-    /* check if all matrix elements are positive */
-    nOfElements = nOfRows * nOfColumns;
-    distMatrix = (double *)malloc(nOfElements * sizeof(double));
-    distMatrixEnd = distMatrix + nOfElements;
-
-    for (row = 0; row<nOfElements; row++)
-    {
-        value = distMatrixIn[row];
-        if (value < 0)
-            cerr << "All matrix elements have to be non-negative." << endl;
-        distMatrix[row] = value;
-    }
-
-
-    /* memory allocation */
-    coveredColumns = (bool *)calloc(nOfColumns, sizeof(bool));
-    coveredRows = (bool *)calloc(nOfRows, sizeof(bool));
-    starMatrix = (bool *)calloc(nOfElements, sizeof(bool));
-    primeMatrix = (bool *)calloc(nOfElements, sizeof(bool));
-    newStarMatrix = (bool *)calloc(nOfElements, sizeof(bool)); /* used in step4 */
-
-    /* preliminary steps */
-    if (nOfRows <= nOfColumns)
-    {
-        minDim = nOfRows;
-
-        for (row = 0; row<nOfRows; row++)
-        {
-            /* find the smallest element in the row */
-            distMatrixTemp = distMatrix + row;
-            minValue = *distMatrixTemp;
-            distMatrixTemp += nOfRows;
-            while (distMatrixTemp < distMatrixEnd)
-            {
-                value = *distMatrixTemp;
-                if (value < minValue)
-                    minValue = value;
-                distMatrixTemp += nOfRows;
-            }
-
-            /* subtract the smallest element from each element of the row */
-            distMatrixTemp = distMatrix + row;
-            while (distMatrixTemp < distMatrixEnd)
-            {
-                *distMatrixTemp -= minValue;
-                distMatrixTemp += nOfRows;
-            }
-        }
-
-        /* Steps 1 and 2a */
-        for (row = 0; row<nOfRows; row++)
-            for (col = 0; col<nOfColumns; col++)
-                if (fabs(distMatrix[row + nOfRows*col]) < DBL_EPSILON)
-                    if (!coveredColumns[col])
-                    {
-                        starMatrix[row + nOfRows*col] = true;
-                        coveredColumns[col] = true;
-                        break;
-                    }
-    }
-    else /* if(nOfRows > nOfColumns) */
-    {
-        minDim = nOfColumns;
-
-        for (col = 0; col<nOfColumns; col++)
-        {
-            /* find the smallest element in the column */
-            distMatrixTemp = distMatrix + nOfRows*col;
-            columnEnd = distMatrixTemp + nOfRows;
-
-            minValue = *distMatrixTemp++;
-            while (distMatrixTemp < columnEnd)
-            {
-                value = *distMatrixTemp++;
-                if (value < minValue)
-                    minValue = value;
-            }
-
-            /* subtract the smallest element from each element of the column */
-            distMatrixTemp = distMatrix + nOfRows*col;
-            while (distMatrixTemp < columnEnd)
-                *distMatrixTemp++ -= minValue;
-        }
-
-        /* Steps 1 and 2a */
-        for (col = 0; col<nOfColumns; col++)
-            for (row = 0; row<nOfRows; row++)
-                if (fabs(distMatrix[row + nOfRows*col]) < DBL_EPSILON)
-                    if (!coveredRows[row])
-                    {
-                        starMatrix[row + nOfRows*col] = true;
-                        coveredColumns[col] = true;
-                        coveredRows[row] = true;
-                        break;
-                    }
-        for (row = 0; row<nOfRows; row++)
-            coveredRows[row] = false;
-
-    }
-
-    /* move to step 2b */
-    step2b(assignment, distMatrix, starMatrix, newStarMatrix, primeMatrix, coveredColumns, coveredRows, nOfRows, nOfColumns, minDim);
-
-    /* compute cost and remove invalid assignments */
-    computeassignmentcost(assignment, cost, distMatrixIn, nOfRows);
-
-    /* free allocated memory */
-    free(distMatrix);
-    free(coveredColumns);
-    free(coveredRows);
-    free(starMatrix);
-    free(primeMatrix);
-    free(newStarMatrix);
-
-    return;
-}
-
-/********************************************************/
-void HungarianAlgorithm::buildassignmentvector(int *assignment, bool *starMatrix, int nOfRows, int nOfColumns)
-{
-    int row, col;
-
-    for (row = 0; row<nOfRows; row++)
-        for (col = 0; col<nOfColumns; col++)
-            if (starMatrix[row + nOfRows*col])
-            {
-#ifdef ONE_INDEXING
-                assignment[row] = col + 1; /* MATLAB-Indexing */
-#else
-                assignment[row] = col;
-#endif
-                break;
-            }
-}
-
-/********************************************************/
-void HungarianAlgorithm::computeassignmentcost(int *assignment, double *cost, double *distMatrix, int nOfRows)
-{
-    int row, col;
-
-    for (row = 0; row<nOfRows; row++)
-    {
-        col = assignment[row];
-        if (col >= 0)
-            *cost += distMatrix[row + nOfRows*col];
-    }
-}
-
-/********************************************************/
-void HungarianAlgorithm::step2a(int *assignment, double *distMatrix, bool *starMatrix, bool *newStarMatrix, bool *primeMatrix, bool *coveredColumns, bool *coveredRows, int nOfRows, int nOfColumns, int minDim)
-{
-    bool *starMatrixTemp, *columnEnd;
-    int col;
-
-    /* cover every column containing a starred zero */
-    for (col = 0; col<nOfColumns; col++)
-    {
-        starMatrixTemp = starMatrix + nOfRows*col;
-        columnEnd = starMatrixTemp + nOfRows;
-        while (starMatrixTemp < columnEnd){
-            if (*starMatrixTemp++)
-            {
-                coveredColumns[col] = true;
-                break;
-            }
-        }
-    }
-
-    /* move to step 3 */
-    step2b(assignment, distMatrix, starMatrix, newStarMatrix, primeMatrix, coveredColumns, coveredRows, nOfRows, nOfColumns, minDim);
-}
-
-/********************************************************/
-void HungarianAlgorithm::step2b(int *assignment, double *distMatrix, bool *starMatrix, bool *newStarMatrix, bool *primeMatrix, bool *coveredColumns, bool *coveredRows, int nOfRows, int nOfColumns, int minDim)
-{
-    int col, nOfCoveredColumns;
-
-    /* count covered columns */
-    nOfCoveredColumns = 0;
-    for (col = 0; col<nOfColumns; col++)
-        if (coveredColumns[col])
-            nOfCoveredColumns++;
-
-    if (nOfCoveredColumns == minDim)
-    {
-        /* algorithm finished */
-        buildassignmentvector(assignment, starMatrix, nOfRows, nOfColumns);
-    }
-    else
-    {
-        /* move to step 3 */
-        step3(assignment, distMatrix, starMatrix, newStarMatrix, primeMatrix, coveredColumns, coveredRows, nOfRows, nOfColumns, minDim);
-    }
-
-}
-
-/********************************************************/
-void HungarianAlgorithm::step3(int *assignment, double *distMatrix, bool *starMatrix, bool *newStarMatrix, bool *primeMatrix, bool *coveredColumns, bool *coveredRows, int nOfRows, int nOfColumns, int minDim)
-{
-    bool zerosFound;
-    int row, col, starCol;
-
-    zerosFound = true;
-    while (zerosFound)
-    {
-        zerosFound = false;
-        for (col = 0; col<nOfColumns; col++)
-            if (!coveredColumns[col])
-                for (row = 0; row<nOfRows; row++)
-                    if ((!coveredRows[row]) && (fabs(distMatrix[row + nOfRows*col]) < DBL_EPSILON))
-                    {
-                        /* prime zero */
-                        primeMatrix[row + nOfRows*col] = true;
-
-                        /* find starred zero in current row */
-                        for (starCol = 0; starCol<nOfColumns; starCol++)
-                            if (starMatrix[row + nOfRows*starCol])
-                                break;
-
-                        if (starCol == nOfColumns) /* no starred zero found */
-                        {
-                            /* move to step 4 */
-                            step4(assignment, distMatrix, starMatrix, newStarMatrix, primeMatrix, coveredColumns, coveredRows, nOfRows, nOfColumns, minDim, row, col);
-                            return;
-                        }
-                        else
-                        {
-                            coveredRows[row] = true;
-                            coveredColumns[starCol] = false;
-                            zerosFound = true;
-                            break;
-                        }
-                    }
-    }
-
-    /* move to step 5 */
-    step5(assignment, distMatrix, starMatrix, newStarMatrix, primeMatrix, coveredColumns, coveredRows, nOfRows, nOfColumns, minDim);
-}
-
-/********************************************************/
-void HungarianAlgorithm::step4(int *assignment, double *distMatrix, bool *starMatrix, bool *newStarMatrix, bool *primeMatrix, bool *coveredColumns, bool *coveredRows, int nOfRows, int nOfColumns, int minDim, int row, int col)
-{
-    int n, starRow, starCol, primeRow, primeCol;
-    int nOfElements = nOfRows*nOfColumns;
-
-    /* generate temporary copy of starMatrix */
-    for (n = 0; n<nOfElements; n++)
-        newStarMatrix[n] = starMatrix[n];
-
-    /* star current zero */
-    newStarMatrix[row + nOfRows*col] = true;
-
-    /* find starred zero in current column */
-    starCol = col;
-    for (starRow = 0; starRow<nOfRows; starRow++)
-        if (starMatrix[starRow + nOfRows*starCol])
-            break;
-
-    while (starRow<nOfRows)
-    {
-        /* unstar the starred zero */
-        newStarMatrix[starRow + nOfRows*starCol] = false;
-
-        /* find primed zero in current row */
-        primeRow = starRow;
-        for (primeCol = 0; primeCol<nOfColumns; primeCol++)
-            if (primeMatrix[primeRow + nOfRows*primeCol])
-                break;
-
-        /* star the primed zero */
-        newStarMatrix[primeRow + nOfRows*primeCol] = true;
-
-        /* find starred zero in current column */
-        starCol = primeCol;
-        for (starRow = 0; starRow<nOfRows; starRow++)
-            if (starMatrix[starRow + nOfRows*starCol])
-                break;
-    }
-
-    /* use temporary copy as new starMatrix */
-    /* delete all primes, uncover all rows */
-    for (n = 0; n<nOfElements; n++)
-    {
-        primeMatrix[n] = false;
-        starMatrix[n] = newStarMatrix[n];
-    }
-    for (n = 0; n<nOfRows; n++)
-        coveredRows[n] = false;
-
-    /* move to step 2a */
-    step2a(assignment, distMatrix, starMatrix, newStarMatrix, primeMatrix, coveredColumns, coveredRows, nOfRows, nOfColumns, minDim);
-}
-
-/********************************************************/
-void HungarianAlgorithm::step5(int *assignment, double *distMatrix, bool *starMatrix, bool *newStarMatrix, bool *primeMatrix, bool *coveredColumns, bool *coveredRows, int nOfRows, int nOfColumns, int minDim)
-{
-    double h, value;
-    int row, col;
-
-    /* find smallest uncovered element h */
-    h = DBL_MAX;
-    for (row = 0; row<nOfRows; row++)
-        if (!coveredRows[row])
-            for (col = 0; col<nOfColumns; col++)
-                if (!coveredColumns[col])
-                {
-                    value = distMatrix[row + nOfRows*col];
-                    if (value < h)
-                        h = value;
-                }
-
-    /* add h to each covered row */
-    for (row = 0; row<nOfRows; row++)
-        if (coveredRows[row])
-            for (col = 0; col<nOfColumns; col++)
-                distMatrix[row + nOfRows*col] += h;
-
-    /* subtract h from each uncovered column */
-    for (col = 0; col<nOfColumns; col++)
-        if (!coveredColumns[col])
-            for (row = 0; row<nOfRows; row++)
-                distMatrix[row + nOfRows*col] -= h;
-
-    /* move to step 3 */
-    step3(assignment, distMatrix, starMatrix, newStarMatrix, primeMatrix, coveredColumns, coveredRows, nOfRows, nOfColumns, minDim);
-}
-

+ 0 - 106
src/detection/sign_detection_yolov8/src/KalmanTracker.cpp

@@ -1,106 +0,0 @@
-//
-// Created by lqx on 20-4-23.
-//
-
-///////////////////////////////////////////////////////////////////////////////
-// KalmanTracker.cpp: KalmanTracker Class Implementation Declaration
-
-#include "KalmanTracker.h"
-#include "detect_obstacle.h"
-#include <iostream>
-
-int KalmanTracker::kf_count = 0;
-
-// initialize Kalman filter
-void KalmanTracker::init_kf(StateType stateMat)
-{
-    int stateNum = 7;
-    int measureNum = 4;
-    kf = KalmanFilter(stateNum, measureNum, 0);
-
-    measurement = Mat::zeros(measureNum, 1, CV_32F);
-
-    kf.transitionMatrix = (Mat_<float>(stateNum, stateNum) <<
-                                                            1, 0, 0, 0, 1, 0, 0,
-            0, 1, 0, 0, 0, 1, 0,
-            0, 0, 1, 0, 0, 0, 1,
-            0, 0, 0, 1, 0, 0, 0,
-            0, 0, 0, 0, 1, 0, 0,
-            0, 0, 0, 0, 0, 1, 0,
-            0, 0, 0, 0, 0, 0, 1);
-
-    setIdentity(kf.measurementMatrix);
-    setIdentity(kf.processNoiseCov, Scalar::all(1e-2));
-    setIdentity(kf.measurementNoiseCov, Scalar::all(1e-1));
-    setIdentity(kf.errorCovPost, Scalar::all(1));
-
-    // initialize state vector with bounding box in [cx,cy,s,r] style
-    kf.statePost.at<float>(0, 0) = stateMat.x + stateMat.width / 2;
-    kf.statePost.at<float>(1, 0) = stateMat.y + stateMat.height / 2;
-    kf.statePost.at<float>(2, 0) = stateMat.area();
-    kf.statePost.at<float>(3, 0) = stateMat.width / stateMat.height;
-}
-
-// Predict the estimated bounding box.
-StateType KalmanTracker::predict()
-{
-    // predict
-    Mat p = kf.predict();
-    m_age += 1;
-
-    if (m_time_since_update > od::max_age)
-        m_hit_streak = 0;
-    m_time_since_update += 1;
-    StateType predictBox = get_rect_xysr(p.at<float>(0, 0), p.at<float>(1, 0), p.at<float>(2, 0), p.at<float>(3, 0));
-    m_history.push_back(predictBox);
-    return m_history.back();
-}
-
-// Update the state vector with observed bounding box.
-void KalmanTracker::update(StateType stateMat, int classId, float prob)
-{
-    m_time_since_update = 0;
-    m_history.clear();
-    m_hits += 1;
-    m_hit_streak += 1;
-    m_class_id = classId;
-
-    //只保留最近的10帧检测类别
-    if (m_class_history.size() >= 10)
-        m_class_history.erase(m_class_history.begin());
-    m_class_history.push_back(classId);
-
-    m_prob = prob;
-    // measurement
-    measurement.at<float>(0, 0) = stateMat.x + stateMat.width / 2;
-    measurement.at<float>(1, 0) = stateMat.y + stateMat.height / 2;
-    measurement.at<float>(2, 0) = stateMat.area();
-    measurement.at<float>(3, 0) = stateMat.width / stateMat.height;
-
-    // update
-    kf.correct(measurement);
-}
-
-// Return the current state vector
-StateType KalmanTracker::get_state()
-{
-    Mat s = kf.statePost;
-    return get_rect_xysr(s.at<float>(0, 0), s.at<float>(1, 0), s.at<float>(2, 0), s.at<float>(3, 0));
-}
-
-
-// Convert bounding box from [cx,cy,s,r] to [x,y,w,h] style.
-StateType KalmanTracker::get_rect_xysr(float cx, float cy, float s, float r)
-{
-    float w = sqrt(s * r);
-    float h = s / w;
-    float x = (cx - w / 2);
-    float y = (cy - h / 2);
-
-    if (x < 0 && cx > 0)
-        x = 0;
-    if (y < 0 && cy > 0)
-        y = 0;
-
-    return StateType(x, y, w, h);
-}

+ 0 - 260
src/detection/sign_detection_yolov8/src/detect_obstacle.cpp

@@ -1,260 +0,0 @@
-
-#include <set>
-#include "detect_obstacle.h"
-
-namespace od{
-// Computes IOU between two bounding boxes
-double GetIOU(Rect_<float> bb_test, Rect_<float> bb_gt)
-{
-    float in = (bb_test & bb_gt).area();
-    float un = bb_test.area() + bb_gt.area() - in;
-
-    if (un < DBL_EPSILON)
-        return 0;
-
-    return (double)(in / un);
-}
-
-
-//tracking obstacle
-bool TrackObstacle(int frame_count,vector<KalmanTracker> &trackers,vector<bbox_t> &outs,vector<od::TrackingBox> &track_result)
-{
-    // variables used in the for-loop
-    vector<Rect_<float>> predictedBoxes;
-    vector<vector<double>> iouMatrix;
-    vector<int> assignment;
-    set<int> unmatchedDetections;
-    set<int> unmatchedTrajectories;
-    set<int> allItems;
-    set<int> matchedItems;
-    vector<cv::Point> matchedPairs;
-    unsigned int trkNum = 0;
-    unsigned int detNum = 0;
-    vector<od::DetectBox> detect_outs;
-    //bbox_t to Detect_box
-    for(unsigned int i=0;i<outs.size();i++)
-    {
-        od::DetectBox detect_temp;
-        detect_temp.class_id = outs[i].obj_id;
-        detect_temp.prob = outs[i].prob;
-        float tpx = outs[i].x;
-        float tpy = outs[i].y;
-        float tpw = outs[i].w;
-        float tph = outs[i].h;
-        //detect_temp.box = Rect_<float>(Point_<float>(tpx, tpy),Point_<float>(tpx + tpw, tpy + tph));
-        detect_temp.box = Rect_<float>(tpx,tpy,tpw,tph);
-        detect_outs.push_back(detect_temp);
-    }
-    //tracking
-    if (trackers.size() == 0) // the first frame met
-    {
-        // initialize kalman trackers using first detections.
-        for (unsigned int i = 0; i < outs.size(); i++)
-        {
-            KalmanTracker trk = KalmanTracker(detect_outs[i].box,
-                                              detect_outs[i].class_id,
-                                              detect_outs[i].prob);
-            trackers.push_back(trk);
-        }
-        return false;
-    }
-    ///////////////////////////////////////
-    // 3.1. get predicted locations from existing trackers.
-    predictedBoxes.clear();
-
-    for (auto it = trackers.begin(); it != trackers.end();)
-    {
-        Rect_<float> pBox = (*it).predict();
-        if (pBox.x >= 0 && pBox.y >= 0)
-        {
-            predictedBoxes.push_back(pBox);
-            it++;
-        }
-        else
-        {
-
-            cerr << "Box invalid at frame: " << frame_count <<" id "<<(*it).m_id+1<<endl;
-            it = trackers.erase(it);
-
-        }
-    }
-
-    if (trackers.size() == 0 || detect_outs.size() == 0) return false;
-
-    ///////////////////////////////////////
-    // 3.2. associate detections to tracked object (both represented as bounding boxes)
-    // dets : detFrameData[fi]
-    trkNum = predictedBoxes.size();
-    detNum = outs.size();
-
-    iouMatrix.clear();
-    iouMatrix.resize(trkNum, vector<double>(detNum, 0));
-
-    for (unsigned int i = 0; i < trkNum; i++) // compute iou matrix as a distance matrix
-    {
-        for (unsigned int j = 0; j < detNum; j++)
-        {
-            // use 1-iou because the hungarian algorithm computes a minimum-cost assignment.
-            iouMatrix[i][j] = 1 - GetIOU(predictedBoxes[i], detect_outs[j].box);
-        }
-    }
-    // solve the assignment problem using hungarian algorithm.
-    // the resulting assignment is [track(prediction) : detection], with len=preNum
-    HungarianAlgorithm HungAlgo;
-    assignment.clear();
-    HungAlgo.Solve(iouMatrix, assignment);
-
-    // find matches, unmatched_detections and unmatched_predictions
-    unmatchedTrajectories.clear();
-    unmatchedDetections.clear();
-    allItems.clear();
-    matchedItems.clear();
-    if (detNum > trkNum) //	there are unmatched detections
-    {
-        for (unsigned int n = 0; n < detNum; n++)
-            allItems.insert(n);
-
-        for (unsigned int i = 0; i < trkNum; ++i)
-            matchedItems.insert(assignment[i]);
-
-        set_difference(allItems.begin(), allItems.end(),
-                       matchedItems.begin(), matchedItems.end(),
-                       insert_iterator<set<int>>(unmatchedDetections, unmatchedDetections.begin()));
-    }
-    else if (detNum < trkNum) // there are unmatched trajectory/predictions
-    {
-        for (unsigned int i = 0; i < trkNum; ++i)
-            if (assignment[i] == -1) // unassigned label will be set as -1 in the assignment algorithm
-                unmatchedTrajectories.insert(i);
-    }
-    // filter out matched with low IOU
-    matchedPairs.clear();
-    for (unsigned int i = 0; i < trkNum; ++i)
-    {
-        if (assignment[i] == -1) // pass over invalid values
-            continue;
-        if (1 - iouMatrix[i][assignment[i]] < od::iouThreshold)
-        {
-            unmatchedTrajectories.insert(i);
-            unmatchedDetections.insert(assignment[i]);
-        }
-        else
-            matchedPairs.push_back(cv::Point(i, assignment[i]));
-    }
-    ///////////////////////////////////////
-    // 3.3. updating trackers
-    // update matched trackers with assigned detections.
-    // each prediction is corresponding to a tracker
-    int detIdx, trkIdx;
-    for (unsigned int i = 0; i < matchedPairs.size(); i++)
-    {
-        trkIdx = matchedPairs[i].x;
-        detIdx = matchedPairs[i].y;
-        trackers[trkIdx].update(detect_outs[detIdx].box,
-                                detect_outs[detIdx].class_id,
-                                detect_outs[detIdx].prob);
-    }
-    // create and initialise new trackers for unmatched detections
-    for (auto umd : unmatchedDetections)
-    {
-        KalmanTracker tracker = KalmanTracker(detect_outs[umd].box,
-                                              detect_outs[umd].class_id,
-                                              detect_outs[umd].prob);
-        trackers.push_back(tracker);
-    }
-
-#if 0
-    //get unique trackers,merg same trackers
-    unsigned int trackers_num = trackers.size();
-    iouMatrix.clear();
-    iouMatrix.resize(trackers_num, vector<double>(trackers_num, 0));
-    for (unsigned int i = 0; i < trackers_num; i++) // compute iou matrix as a distance matrix
-    {
-        for (unsigned int j = 0; j < trackers_num; j++)
-        {
-            // use 1-iou because the hungarian algorithm computes a minimum-cost assignment.
-            if(j==i)
-                iouMatrix[i][j] = 1;
-            else
-                iouMatrix[i][j] = 1 - GetIOU(trackers[i].get_state(), trackers[j].get_state());
-        }
-    }
-    // solve the assignment problem using hungarian algorithm.
-    // the resulting assignment is [track(prediction) : detection], with len=preNum
-    assignment.clear();
-    HungAlgo.Solve(iouMatrix, assignment);
-    // filter out matched with low IOU
-    matchedPairs.clear();
-    for (unsigned int i = 0; i < trackers_num; ++i)
-    {
-        if (assignment[i] == -1) // pass over invalid values
-            continue;
-        if (iouMatrix[i][assignment[i]] < od::iouThreshold)
-        {
-            matchedPairs.push_back(cv::Point(i, assignment[i]));
-        }
-    }
-    int index1,index2;
-    vector<int> delete_index;
-    for (unsigned int i = 0; i < matchedPairs.size(); i++)
-    {
-        index1 = matchedPairs[i].x;
-        index2 = matchedPairs[i].y;
-        if(index1 >= index2)
-            continue;
-        if((trackers[index1].m_id > trackers[index2].m_id) && (trackers[index1].m_class_history.size()>0))
-        {
-            trackers[index1].m_id = trackers[index2].m_id;
-            trackers[index1].m_class_history.insert(trackers[index1].m_class_history.begin(),
-                                                    trackers[index2].m_class_history.begin(),trackers[index2].m_class_history.end());
-            delete_index.push_back(index2);
-        }
-        else if((trackers[index2].m_id > trackers[index1].m_id) && (trackers[index2].m_class_history.size()>0))
-        {
-            trackers[index2].m_id = trackers[index1].m_id;
-            trackers[index2].m_class_history.insert(trackers[index2].m_class_history.begin(),
-                                                    trackers[index1].m_class_history.begin(),trackers[index1].m_class_history.end());
-            delete_index.push_back(index1);
-
-        }
-    }
-    for(unsigned int i = 0; i < delete_index.size(); i++)
-    {
-        int idx = delete_index[i] - i;
-        trackers.erase(trackers.begin() + idx);
-    }
-#endif
-
-    // get trackers' output
-    track_result.clear();
-    for (auto it = trackers.begin(); it != trackers.end();)
-    {
-        if (((*it).m_time_since_update <= od::max_age) &&
-                ((*it).m_hit_streak >= od::min_hits || frame_count <= od::min_hits))
-        {
-            od::TrackingBox res;
-            res.box = (*it).get_state();
-            res.id = (*it).m_id + 1;
-            res.frame = frame_count;
-            res.class_id = (*it).m_class_id;
-            res.prob = (*it).m_prob;
-            res.class_history = (*it).m_class_history;
-            track_result.push_back(res);
-            it++;
-        }
-        else
-            it ++;
-        //remove dead tracklet
-        if(it != trackers.end() && (*it).m_time_since_update > od::max_age)
-        {
-            it = trackers.erase(it);
-        }
-    }
-    if(track_result.size()>0)
-        return true;
-    else return false;
-}
-}
-
-
-

+ 0 - 443
src/detection/sign_detection_yolov8/src/infer.cu

@@ -1,443 +0,0 @@
-
-#include <NvInfer.h>
-#include <cuda_runtime.h>
-#include <stdarg.h>
-#include <fstream>
-#include <numeric>
-#include <sstream>
-#include <unordered_map>
-#include "../include/infer.hpp"
-
-
-namespace trt {
-
-using namespace std;
-using namespace nvinfer1;
-
-#define checkRuntime(call)                                                                 \
-  do {                                                                                     \
-    auto ___call__ret_code__ = (call);                                                     \
-    if (___call__ret_code__ != cudaSuccess) {                                              \
-      INFO("CUDA Runtime error💥 %s # %s, code = %s [ %d ]", #call,                         \
-           cudaGetErrorString(___call__ret_code__), cudaGetErrorName(___call__ret_code__), \
-           ___call__ret_code__);                                                           \
-      abort();                                                                             \
-    }                                                                                      \
-  } while (0)
-
-#define checkKernel(...)                 \
-  do {                                   \
-    { (__VA_ARGS__); }                   \
-    checkRuntime(cudaPeekAtLastError()); \
-  } while (0)
-
-#define Assert(op)                 \
-  do {                             \
-    bool cond = !(!(op));          \
-    if (!cond) {                   \
-      INFO("Assert failed, " #op); \
-      abort();                     \
-    }                              \
-  } while (0)
-
-#define Assertf(op, ...)                             \
-  do {                                               \
-    bool cond = !(!(op));                            \
-    if (!cond) {                                     \
-      INFO("Assert failed, " #op " : " __VA_ARGS__); \
-      abort();                                       \
-    }                                                \
-  } while (0)
-
-static string file_name(const string &path, bool include_suffix) {
-  if (path.empty()) return "";
-
-  int p = path.rfind('/');
-  int e = path.rfind('\\');
-  p = max(p, e);
-  p += 1;
-
-  // include suffix
-  if (include_suffix) return path.substr(p);
-
-  int u = path.rfind('.');
-  if (u == -1) return path.substr(p);
-
-  if (u <= p) u = path.size();
-  return path.substr(p, u - p);
-}
-
-void __log_func(const char *file, int line, const char *fmt, ...) {
-  va_list vl;
-  va_start(vl, fmt);
-  char buffer[2048];
-  string filename = file_name(file, true);
-  int n = snprintf(buffer, sizeof(buffer), "[%s:%d]: ", filename.c_str(), line);
-  vsnprintf(buffer + n, sizeof(buffer) - n, fmt, vl);
-  fprintf(stdout, "%s\n", buffer);
-}
-
-static std::string format_shape(const Dims &shape) {
-  stringstream output;
-  char buf[64];
-  const char *fmts[] = {"%d", "x%d"};
-  for (int i = 0; i < shape.nbDims; ++i) {
-    snprintf(buf, sizeof(buf), fmts[i != 0], shape.d[i]);
-    output << buf;
-  }
-  return output.str();
-}
-
-Timer::Timer() {
-  checkRuntime(cudaEventCreate((cudaEvent_t *)&start_));
-  checkRuntime(cudaEventCreate((cudaEvent_t *)&stop_));
-}
-
-Timer::~Timer() {
-  checkRuntime(cudaEventDestroy((cudaEvent_t)start_));
-  checkRuntime(cudaEventDestroy((cudaEvent_t)stop_));
-}
-
-void Timer::start(void *stream) {
-  stream_ = stream;
-  checkRuntime(cudaEventRecord((cudaEvent_t)start_, (cudaStream_t)stream_));
-}
-
-float Timer::stop(const char *prefix, bool print) {
-  checkRuntime(cudaEventRecord((cudaEvent_t)stop_, (cudaStream_t)stream_));
-  checkRuntime(cudaEventSynchronize((cudaEvent_t)stop_));
-
-  float latency = 0;
-  checkRuntime(cudaEventElapsedTime(&latency, (cudaEvent_t)start_, (cudaEvent_t)stop_));
-
-  if (print) {
-    printf("[%s]: %.5f ms\n", prefix, latency);
-  }
-  return latency;
-}
-
-BaseMemory::BaseMemory(void *cpu, size_t cpu_bytes, void *gpu, size_t gpu_bytes) {
-  reference(cpu, cpu_bytes, gpu, gpu_bytes);
-}
-
-void BaseMemory::reference(void *cpu, size_t cpu_bytes, void *gpu, size_t gpu_bytes) {
-  release();
-
-  if (cpu == nullptr || cpu_bytes == 0) {
-    cpu = nullptr;
-    cpu_bytes = 0;
-  }
-
-  if (gpu == nullptr || gpu_bytes == 0) {
-    gpu = nullptr;
-    gpu_bytes = 0;
-  }
-
-  this->cpu_ = cpu;
-  this->cpu_capacity_ = cpu_bytes;
-  this->cpu_bytes_ = cpu_bytes;
-  this->gpu_ = gpu;
-  this->gpu_capacity_ = gpu_bytes;
-  this->gpu_bytes_ = gpu_bytes;
-
-  this->owner_cpu_ = !(cpu && cpu_bytes > 0);
-  this->owner_gpu_ = !(gpu && gpu_bytes > 0);
-}
-
-BaseMemory::~BaseMemory() { release(); }
-
-void *BaseMemory::gpu_realloc(size_t bytes) {
-  if (gpu_capacity_ < bytes) {
-    release_gpu();
-
-    gpu_capacity_ = bytes;
-    checkRuntime(cudaMalloc(&gpu_, bytes));
-    // checkRuntime(cudaMemset(gpu_, 0, size));
-  }
-  gpu_bytes_ = bytes;
-  return gpu_;
-}
-
-void *BaseMemory::cpu_realloc(size_t bytes) {
-  if (cpu_capacity_ < bytes) {
-    release_cpu();
-
-    cpu_capacity_ = bytes;
-    checkRuntime(cudaMallocHost(&cpu_, bytes));
-    Assert(cpu_ != nullptr);
-    // memset(cpu_, 0, size);
-  }
-  cpu_bytes_ = bytes;
-  return cpu_;
-}
-
-void BaseMemory::release_cpu() {
-  if (cpu_) {
-    if (owner_cpu_) {
-      checkRuntime(cudaFreeHost(cpu_));
-    }
-    cpu_ = nullptr;
-  }
-  cpu_capacity_ = 0;
-  cpu_bytes_ = 0;
-}
-
-void BaseMemory::release_gpu() {
-  if (gpu_) {
-    if (owner_gpu_) {
-      checkRuntime(cudaFree(gpu_));
-    }
-    gpu_ = nullptr;
-  }
-  gpu_capacity_ = 0;
-  gpu_bytes_ = 0;
-}
-
-void BaseMemory::release() {
-  release_cpu();
-  release_gpu();
-}
-
-class __native_nvinfer_logger : public ILogger {
- public:
-  virtual void log(Severity severity, const char *msg) noexcept override {
-    if (severity == Severity::kINTERNAL_ERROR) {
-      INFO("NVInfer INTERNAL_ERROR: %s", msg);
-      abort();
-    } else if (severity == Severity::kERROR) {
-      INFO("NVInfer: %s", msg);
-    }
-    // else  if (severity == Severity::kWARNING) {
-    //     INFO("NVInfer: %s", msg);
-    // }
-    // else  if (severity == Severity::kINFO) {
-    //     INFO("NVInfer: %s", msg);
-    // }
-    // else {
-    //     INFO("%s", msg);
-    // }
-  }
-};
-static __native_nvinfer_logger gLogger;
-
-template <typename _T>
-static void destroy_nvidia_pointer(_T *ptr) {
-  if (ptr) ptr->destroy();
-}
-
-static std::vector<uint8_t> load_file(const string &file) {
-  ifstream in(file, ios::in | ios::binary);
-  if (!in.is_open()) return {};
-
-  in.seekg(0, ios::end);
-  size_t length = in.tellg();
-
-  std::vector<uint8_t> data;
-  if (length > 0) {
-    in.seekg(0, ios::beg);
-    data.resize(length);
-
-    in.read((char *)&data[0], length);
-  }
-  in.close();
-  return data;
-}
-
-class __native_engine_context {
- public:
-  virtual ~__native_engine_context() { destroy(); }
-
-  bool construct(const void *pdata, size_t size) {
-    destroy();
-
-    if (pdata == nullptr || size == 0) return false;
-
-    runtime_ = shared_ptr<IRuntime>(createInferRuntime(gLogger), destroy_nvidia_pointer<IRuntime>);
-    if (runtime_ == nullptr) return false;
-
-    engine_ = shared_ptr<ICudaEngine>(runtime_->deserializeCudaEngine(pdata, size, nullptr),
-                                      destroy_nvidia_pointer<ICudaEngine>);
-    if (engine_ == nullptr) return false;
-
-    context_ = shared_ptr<IExecutionContext>(engine_->createExecutionContext(),
-                                             destroy_nvidia_pointer<IExecutionContext>);
-    return context_ != nullptr;
-  }
-
- private:
-  void destroy() {
-    context_.reset();
-    engine_.reset();
-    runtime_.reset();
-  }
-
- public:
-  shared_ptr<IExecutionContext> context_;
-  shared_ptr<ICudaEngine> engine_;
-  shared_ptr<IRuntime> runtime_ = nullptr;
-};
-
-class InferImpl : public Infer {
- public:
-  shared_ptr<__native_engine_context> context_;
-  unordered_map<string, int> binding_name_to_index_;
-
-  virtual ~InferImpl() = default;
-
-  bool construct(const void *data, size_t size) {
-    context_ = make_shared<__native_engine_context>();
-    if (!context_->construct(data, size)) {
-      return false;
-    }
-
-    setup();
-    return true;
-  }
-
-  bool load(const string &file) {
-    auto data = load_file(file);
-    if (data.empty()) {
-      INFO("An empty file has been loaded. Please confirm your file path: %s", file.c_str());
-      return false;
-    }
-    return this->construct(data.data(), data.size());
-  }
-
-  void setup() {
-    auto engine = this->context_->engine_;
-    int nbBindings = engine->getNbBindings();
-
-    binding_name_to_index_.clear();
-    for (int i = 0; i < nbBindings; ++i) {
-      const char *bindingName = engine->getBindingName(i);
-      binding_name_to_index_[bindingName] = i;
-    }
-  }
-
-  virtual int index(const std::string &name) override {
-    auto iter = binding_name_to_index_.find(name);
-    Assertf(iter != binding_name_to_index_.end(), "Can not found the binding name: %s",
-            name.c_str());
-    return iter->second;
-  }
-
-  virtual bool forward(const std::vector<void *> &bindings, void *stream,
-                       void *input_consum_event) override {
-    return this->context_->context_->enqueueV2((void**)bindings.data(), (cudaStream_t)stream,
-                                               (cudaEvent_t *)input_consum_event);
-  }
-
-  virtual std::vector<int> run_dims(const std::string &name) override {
-    return run_dims(index(name));
-  }
-
-  virtual std::vector<int> run_dims(int ibinding) override {
-    auto dim = this->context_->context_->getBindingDimensions(ibinding);
-    return std::vector<int>(dim.d, dim.d + dim.nbDims);
-  }
-
-  virtual std::vector<int> static_dims(const std::string &name) override {
-    return static_dims(index(name));
-  }
-
-  virtual std::vector<int> static_dims(int ibinding) override {
-    auto dim = this->context_->engine_->getBindingDimensions(ibinding);
-    return std::vector<int>(dim.d, dim.d + dim.nbDims);
-  }
-
-  virtual int num_bindings() override { return this->context_->engine_->getNbBindings(); }
-
-  virtual bool is_input(int ibinding) override {
-    return this->context_->engine_->bindingIsInput(ibinding);
-  }
-
-  virtual bool set_run_dims(const std::string &name, const std::vector<int> &dims) override {
-    return this->set_run_dims(index(name), dims);
-  }
-
-  virtual bool set_run_dims(int ibinding, const std::vector<int> &dims) override {
-    Dims d;
-    memcpy(d.d, dims.data(), sizeof(int) * dims.size());
-    d.nbDims = dims.size();
-    return this->context_->context_->setBindingDimensions(ibinding, d);
-  }
-
-  virtual int numel(const std::string &name) override { return numel(index(name)); }
-
-  virtual int numel(int ibinding) override {
-    auto dim = this->context_->context_->getBindingDimensions(ibinding);
-    return std::accumulate(dim.d, dim.d + dim.nbDims, 1, std::multiplies<int>());
-  }
-
-  virtual DType dtype(const std::string &name) override { return dtype(index(name)); }
-
-  virtual DType dtype(int ibinding) override {
-    return (DType)this->context_->engine_->getBindingDataType(ibinding);
-  }
-
-  virtual bool has_dynamic_dim() override {
-    // check if any input or output bindings have dynamic shapes
-    // code from ChatGPT
-    int numBindings = this->context_->engine_->getNbBindings();
-    for (int i = 0; i < numBindings; ++i) {
-      nvinfer1::Dims dims = this->context_->engine_->getBindingDimensions(i);
-      for (int j = 0; j < dims.nbDims; ++j) {
-        if (dims.d[j] == -1) return true;
-      }
-    }
-    return false;
-  }
-
-  virtual void print() override {
-    INFO("Infer %p [%s]", this, has_dynamic_dim() ? "DynamicShape" : "StaticShape");
-
-    int num_input = 0;
-    int num_output = 0;
-    auto engine = this->context_->engine_;
-    for (int i = 0; i < engine->getNbBindings(); ++i) {
-      if (engine->bindingIsInput(i))
-        num_input++;
-      else
-        num_output++;
-    }
-
-    INFO("Inputs: %d", num_input);
-    for (int i = 0; i < num_input; ++i) {
-      auto name = engine->getBindingName(i);
-      auto dim = engine->getBindingDimensions(i);
-      INFO("\t%d.%s : shape {%s}", i, name, format_shape(dim).c_str());
-    }
-
-    INFO("Outputs: %d", num_output);
-    for (int i = 0; i < num_output; ++i) {
-      auto name = engine->getBindingName(i + num_input);
-      auto dim = engine->getBindingDimensions(i + num_input);
-      INFO("\t%d.%s : shape {%s}", i, name, format_shape(dim).c_str());
-    }
-  }
-};
-
-Infer *loadraw(const std::string &file) {
-  InferImpl *impl = new InferImpl();
-  if (!impl->load(file)) {
-    delete impl;
-    impl = nullptr;
-  }
-  return impl;
-}
-
-std::shared_ptr<Infer> load(const std::string &file) {
-  return std::shared_ptr<InferImpl>((InferImpl *)loadraw(file));
-}
-
-std::string format_shape(const std::vector<int> &shape) {
-  stringstream output;
-  char buf[64];
-  const char *fmts[] = {"%d", "x%d"};
-  for (int i = 0; i < (int)shape.size(); ++i) {
-    snprintf(buf, sizeof(buf), fmts[i != 0], shape[i]);
-    output << buf;
-  }
-  return output.str();
-}
-};  // namespace trt

+ 0 - 740
src/detection/sign_detection_yolov8/src/yolo.cu

@@ -1,740 +0,0 @@
-#include "../include/infer.hpp"
-#include "../include/yolo.hpp"
-
-namespace yolo {
-
-using namespace std;
-
-#define GPU_BLOCK_THREADS 512
-#define checkRuntime(call)                                                                 \
-  do {                                                                                     \
-    auto ___call__ret_code__ = (call);                                                     \
-    if (___call__ret_code__ != cudaSuccess) {                                              \
-      INFO("CUDA Runtime error💥 %s # %s, code = %s [ %d ]", #call,                         \
-           cudaGetErrorString(___call__ret_code__), cudaGetErrorName(___call__ret_code__), \
-           ___call__ret_code__);                                                           \
-      abort();                                                                             \
-    }                                                                                      \
-  } while (0)
-
-#define checkKernel(...)                 \
-  do {                                   \
-    { (__VA_ARGS__); }                   \
-    checkRuntime(cudaPeekAtLastError()); \
-  } while (0)
-
-enum class NormType : int { None = 0, MeanStd = 1, AlphaBeta = 2 };
-
-enum class ChannelType : int { None = 0, SwapRB = 1 };
-
-/* 归一化操作,可以支持均值标准差,alpha beta,和swap RB */
-struct Norm {
-  float mean[3];
-  float std[3];
-  float alpha, beta;
-  NormType type = NormType::None;
-  ChannelType channel_type = ChannelType::None;
-
-  // out = (x * alpha - mean) / std
-  static Norm mean_std(const float mean[3], const float std[3], float alpha = 1 / 255.0f,
-                       ChannelType channel_type = ChannelType::None);
-
-  // out = x * alpha + beta
-  static Norm alpha_beta(float alpha, float beta = 0, ChannelType channel_type = ChannelType::None);
-
-  // None
-  static Norm None();
-};
-
-Norm Norm::mean_std(const float mean[3], const float std[3], float alpha,
-                    ChannelType channel_type) {
-  Norm out;
-  out.type = NormType::MeanStd;
-  out.alpha = alpha;
-  out.channel_type = channel_type;
-  memcpy(out.mean, mean, sizeof(out.mean));
-  memcpy(out.std, std, sizeof(out.std));
-  return out;
-}
-
-Norm Norm::alpha_beta(float alpha, float beta, ChannelType channel_type) {
-  Norm out;
-  out.type = NormType::AlphaBeta;
-  out.alpha = alpha;
-  out.beta = beta;
-  out.channel_type = channel_type;
-  return out;
-}
-
-Norm Norm::None() { return Norm(); }
-
-const int NUM_BOX_ELEMENT = 8;  // left, top, right, bottom, confidence, class,
-                                // keepflag, row_index(output)
-const int MAX_IMAGE_BOXES = 1024;
-inline int upbound(int n, int align = 32) { return (n + align - 1) / align * align; }
-static __host__ __device__ void affine_project(float *matrix, float x, float y, float *ox,
-                                               float *oy) {
-  *ox = matrix[0] * x + matrix[1] * y + matrix[2];
-  *oy = matrix[3] * x + matrix[4] * y + matrix[5];
-}
-
-static __global__ void decode_kernel_common(float *predict, int num_bboxes, int num_classes,
-                                            int output_cdim, float confidence_threshold,
-                                            float *invert_affine_matrix, float *parray,
-                                            int MAX_IMAGE_BOXES) {
-  int position = blockDim.x * blockIdx.x + threadIdx.x;
-  if (position >= num_bboxes) return;
-
-  float *pitem = predict + output_cdim * position;
-  float objectness = pitem[4];
-  if (objectness < confidence_threshold) return;
-
-  float *class_confidence = pitem + 5;
-  float confidence = *class_confidence++;
-  int label = 0;
-  for (int i = 1; i < num_classes; ++i, ++class_confidence) {
-    if (*class_confidence > confidence) {
-      confidence = *class_confidence;
-      label = i;
-    }
-  }
-
-  confidence *= objectness;
-  if (confidence < confidence_threshold) return;
-
-  int index = atomicAdd(parray, 1);
-  if (index >= MAX_IMAGE_BOXES) return;
-
-  float cx = *pitem++;
-  float cy = *pitem++;
-  float width = *pitem++;
-  float height = *pitem++;
-  float left = cx - width * 0.5f;
-  float top = cy - height * 0.5f;
-  float right = cx + width * 0.5f;
-  float bottom = cy + height * 0.5f;
-  affine_project(invert_affine_matrix, left, top, &left, &top);
-  affine_project(invert_affine_matrix, right, bottom, &right, &bottom);
-
-  float *pout_item = parray + 1 + index * NUM_BOX_ELEMENT;
-  *pout_item++ = left;
-  *pout_item++ = top;
-  *pout_item++ = right;
-  *pout_item++ = bottom;
-  *pout_item++ = confidence;
-  *pout_item++ = label;
-  *pout_item++ = 1;  // 1 = keep, 0 = ignore
-}
-
-static __global__ void decode_kernel_v8(float *predict, int num_bboxes, int num_classes,
-                                        int output_cdim, float confidence_threshold,
-                                        float *invert_affine_matrix, float *parray,
-                                        int MAX_IMAGE_BOXES) {
-  int position = blockDim.x * blockIdx.x + threadIdx.x;
-  if (position >= num_bboxes) return;
-
-  float *pitem = predict + output_cdim * position;
-  float *class_confidence = pitem + 4;
-  float confidence = *class_confidence++;
-  int label = 0;
-  for (int i = 1; i < num_classes; ++i, ++class_confidence) {
-    if (*class_confidence > confidence) {
-      confidence = *class_confidence;
-      label = i;
-    }
-  }
-  if (confidence < confidence_threshold) return;
-
-  int index = atomicAdd(parray, 1);
-  if (index >= MAX_IMAGE_BOXES) return;
-
-  float cx = *pitem++;
-  float cy = *pitem++;
-  float width = *pitem++;
-  float height = *pitem++;
-  float left = cx - width * 0.5f;
-  float top = cy - height * 0.5f;
-  float right = cx + width * 0.5f;
-  float bottom = cy + height * 0.5f;
-  affine_project(invert_affine_matrix, left, top, &left, &top);
-  affine_project(invert_affine_matrix, right, bottom, &right, &bottom);
-
-  float *pout_item = parray + 1 + index * NUM_BOX_ELEMENT;
-  *pout_item++ = left;
-  *pout_item++ = top;
-  *pout_item++ = right;
-  *pout_item++ = bottom;
-  *pout_item++ = confidence;
-  *pout_item++ = label;
-  *pout_item++ = 1;  // 1 = keep, 0 = ignore
-  *pout_item++ = position;
-}
-
-static __device__ float box_iou(float aleft, float atop, float aright, float abottom, float bleft,
-                                float btop, float bright, float bbottom) {
-  float cleft = max(aleft, bleft);
-  float ctop = max(atop, btop);
-  float cright = min(aright, bright);
-  float cbottom = min(abottom, bbottom);
-
-  float c_area = max(cright - cleft, 0.0f) * max(cbottom - ctop, 0.0f);
-  if (c_area == 0.0f) return 0.0f;
-
-  float a_area = max(0.0f, aright - aleft) * max(0.0f, abottom - atop);
-  float b_area = max(0.0f, bright - bleft) * max(0.0f, bbottom - btop);
-  return c_area / (a_area + b_area - c_area);
-}
-
-static __global__ void fast_nms_kernel(float *bboxes, int MAX_IMAGE_BOXES, float threshold) {
-  int position = (blockDim.x * blockIdx.x + threadIdx.x);
-  int count = min((int)*bboxes, MAX_IMAGE_BOXES);
-  if (position >= count) return;
-
-  // left, top, right, bottom, confidence, class, keepflag
-  float *pcurrent = bboxes + 1 + position * NUM_BOX_ELEMENT;
-  for (int i = 0; i < count; ++i) {
-    float *pitem = bboxes + 1 + i * NUM_BOX_ELEMENT;
-    if (i == position || pcurrent[5] != pitem[5]) continue;
-
-    if (pitem[4] >= pcurrent[4]) {
-      if (pitem[4] == pcurrent[4] && i < position) continue;
-
-      float iou = box_iou(pcurrent[0], pcurrent[1], pcurrent[2], pcurrent[3], pitem[0], pitem[1],
-                          pitem[2], pitem[3]);
-
-      if (iou > threshold) {
-        pcurrent[6] = 0;  // 1=keep, 0=ignore
-        return;
-      }
-    }
-  }
-}
-
-static dim3 grid_dims(int numJobs) {
-  int numBlockThreads = numJobs < GPU_BLOCK_THREADS ? numJobs : GPU_BLOCK_THREADS;
-  return dim3(((numJobs + numBlockThreads - 1) / (float)numBlockThreads));
-}
-
-static dim3 block_dims(int numJobs) {
-  return numJobs < GPU_BLOCK_THREADS ? numJobs : GPU_BLOCK_THREADS;
-}
-
-static void decode_kernel_invoker(float *predict, int num_bboxes, int num_classes, int output_cdim,
-                                  float confidence_threshold, float nms_threshold,
-                                  float *invert_affine_matrix, float *parray, int MAX_IMAGE_BOXES,
-                                  Type type, cudaStream_t stream) {
-  auto grid = grid_dims(num_bboxes);
-  auto block = block_dims(num_bboxes);
-
-  if (type == Type::V8 || type == Type::V8Seg) {
-    checkKernel(decode_kernel_v8<<<grid, block, 0, stream>>>(
-        predict, num_bboxes, num_classes, output_cdim, confidence_threshold, invert_affine_matrix,
-        parray, MAX_IMAGE_BOXES));
-  } else {
-    checkKernel(decode_kernel_common<<<grid, block, 0, stream>>>(
-        predict, num_bboxes, num_classes, output_cdim, confidence_threshold, invert_affine_matrix,
-        parray, MAX_IMAGE_BOXES));
-  }
-
-  grid = grid_dims(MAX_IMAGE_BOXES);
-  block = block_dims(MAX_IMAGE_BOXES);
-  checkKernel(fast_nms_kernel<<<grid, block, 0, stream>>>(parray, MAX_IMAGE_BOXES, nms_threshold));
-}
-
-static __global__ void warp_affine_bilinear_and_normalize_plane_kernel(
-    uint8_t *src, int src_line_size, int src_width, int src_height, float *dst, int dst_width,
-    int dst_height, uint8_t const_value_st, float *warp_affine_matrix_2_3, Norm norm) {
-  int dx = blockDim.x * blockIdx.x + threadIdx.x;
-  int dy = blockDim.y * blockIdx.y + threadIdx.y;
-  if (dx >= dst_width || dy >= dst_height) return;
-
-  float m_x1 = warp_affine_matrix_2_3[0];
-  float m_y1 = warp_affine_matrix_2_3[1];
-  float m_z1 = warp_affine_matrix_2_3[2];
-  float m_x2 = warp_affine_matrix_2_3[3];
-  float m_y2 = warp_affine_matrix_2_3[4];
-  float m_z2 = warp_affine_matrix_2_3[5];
-
-  float src_x = m_x1 * dx + m_y1 * dy + m_z1;
-  float src_y = m_x2 * dx + m_y2 * dy + m_z2;
-  float c0, c1, c2;
-
-  if (src_x <= -1 || src_x >= src_width || src_y <= -1 || src_y >= src_height) {
-    // out of range
-    c0 = const_value_st;
-    c1 = const_value_st;
-    c2 = const_value_st;
-  } else {
-    int y_low = floorf(src_y);
-    int x_low = floorf(src_x);
-    int y_high = y_low + 1;
-    int x_high = x_low + 1;
-
-    uint8_t const_value[] = {const_value_st, const_value_st, const_value_st};
-    float ly = src_y - y_low;
-    float lx = src_x - x_low;
-    float hy = 1 - ly;
-    float hx = 1 - lx;
-    float w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
-    uint8_t *v1 = const_value;
-    uint8_t *v2 = const_value;
-    uint8_t *v3 = const_value;
-    uint8_t *v4 = const_value;
-    if (y_low >= 0) {
-      if (x_low >= 0) v1 = src + y_low * src_line_size + x_low * 3;
-
-      if (x_high < src_width) v2 = src + y_low * src_line_size + x_high * 3;
-    }
-
-    if (y_high < src_height) {
-      if (x_low >= 0) v3 = src + y_high * src_line_size + x_low * 3;
-
-      if (x_high < src_width) v4 = src + y_high * src_line_size + x_high * 3;
-    }
-
-    // same to opencv
-    c0 = floorf(w1 * v1[0] + w2 * v2[0] + w3 * v3[0] + w4 * v4[0] + 0.5f);
-    c1 = floorf(w1 * v1[1] + w2 * v2[1] + w3 * v3[1] + w4 * v4[1] + 0.5f);
-    c2 = floorf(w1 * v1[2] + w2 * v2[2] + w3 * v3[2] + w4 * v4[2] + 0.5f);
-  }
-
-  if (norm.channel_type == ChannelType::SwapRB) {
-    float t = c2;
-    c2 = c0;
-    c0 = t;
-  }
-
-  if (norm.type == NormType::MeanStd) {
-    c0 = (c0 * norm.alpha - norm.mean[0]) / norm.std[0];
-    c1 = (c1 * norm.alpha - norm.mean[1]) / norm.std[1];
-    c2 = (c2 * norm.alpha - norm.mean[2]) / norm.std[2];
-  } else if (norm.type == NormType::AlphaBeta) {
-    c0 = c0 * norm.alpha + norm.beta;
-    c1 = c1 * norm.alpha + norm.beta;
-    c2 = c2 * norm.alpha + norm.beta;
-  }
-
-  int area = dst_width * dst_height;
-  float *pdst_c0 = dst + dy * dst_width + dx;
-  float *pdst_c1 = pdst_c0 + area;
-  float *pdst_c2 = pdst_c1 + area;
-  *pdst_c0 = c0;
-  *pdst_c1 = c1;
-  *pdst_c2 = c2;
-}
-
-static void warp_affine_bilinear_and_normalize_plane(uint8_t *src, int src_line_size, int src_width,
-                                                     int src_height, float *dst, int dst_width,
-                                                     int dst_height, float *matrix_2_3,
-                                                     uint8_t const_value, const Norm &norm,
-                                                     cudaStream_t stream) {
-  dim3 grid((dst_width + 31) / 32, (dst_height + 31) / 32);
-  dim3 block(32, 32);
-
-  checkKernel(warp_affine_bilinear_and_normalize_plane_kernel<<<grid, block, 0, stream>>>(
-      src, src_line_size, src_width, src_height, dst, dst_width, dst_height, const_value,
-      matrix_2_3, norm));
-}
-
-static __global__ void decode_single_mask_kernel(int left, int top, float *mask_weights,
-                                                 float *mask_predict, int mask_width,
-                                                 int mask_height, unsigned char *mask_out,
-                                                 int mask_dim, int out_width, int out_height) {
-  // mask_predict to mask_out
-  // mask_weights @ mask_predict
-  int dx = blockDim.x * blockIdx.x + threadIdx.x;
-  int dy = blockDim.y * blockIdx.y + threadIdx.y;
-  if (dx >= out_width || dy >= out_height) return;
-
-  int sx = left + dx;
-  int sy = top + dy;
-  if (sx < 0 || sx >= mask_width || sy < 0 || sy >= mask_height) {
-    mask_out[dy * out_width + dx] = 0;
-    return;
-  }
-
-  float cumprod = 0;
-  for (int ic = 0; ic < mask_dim; ++ic) {
-    float cval = mask_predict[(ic * mask_height + sy) * mask_width + sx];
-    float wval = mask_weights[ic];
-    cumprod += cval * wval;
-  }
-
-  float alpha = 1.0f / (1.0f + exp(-cumprod));
-  mask_out[dy * out_width + dx] = alpha * 255;
-}
-
-static void decode_single_mask(float left, float top, float *mask_weights, float *mask_predict,
-                               int mask_width, int mask_height, unsigned char *mask_out,
-                               int mask_dim, int out_width, int out_height, cudaStream_t stream) {
-  // mask_weights is mask_dim(32 element) gpu pointer
-  dim3 grid((out_width + 31) / 32, (out_height + 31) / 32);
-  dim3 block(32, 32);
-
-  checkKernel(decode_single_mask_kernel<<<grid, block, 0, stream>>>(
-      left, top, mask_weights, mask_predict, mask_width, mask_height, mask_out, mask_dim, out_width,
-      out_height));
-}
-
-const char *type_name(Type type) {
-  switch (type) {
-    case Type::V5:
-      return "YoloV5";
-    case Type::V3:
-      return "YoloV3";
-    case Type::V7:
-      return "YoloV7";
-    case Type::X:
-      return "YoloX";
-    case Type::V8:
-      return "YoloV8";
-    default:
-      return "Unknow";
-  }
-}
-
-struct AffineMatrix {
-  float i2d[6];  // image to dst(network), 2x3 matrix
-  float d2i[6];  // dst to image, 2x3 matrix
-
-  void compute(const std::tuple<int, int> &from, const std::tuple<int, int> &to) {
-    float scale_x = get<0>(to) / (float)get<0>(from);
-    float scale_y = get<1>(to) / (float)get<1>(from);
-    float scale = std::min(scale_x, scale_y);
-    i2d[0] = scale;
-    i2d[1] = 0;
-    i2d[2] = -scale * get<0>(from) * 0.5 + get<0>(to) * 0.5 + scale * 0.5 - 0.5;
-    i2d[3] = 0;
-    i2d[4] = scale;
-    i2d[5] = -scale * get<1>(from) * 0.5 + get<1>(to) * 0.5 + scale * 0.5 - 0.5;
-
-    double D = i2d[0] * i2d[4] - i2d[1] * i2d[3];
-    D = D != 0. ? double(1.) / D : double(0.);
-    double A11 = i2d[4] * D, A22 = i2d[0] * D, A12 = -i2d[1] * D, A21 = -i2d[3] * D;
-    double b1 = -A11 * i2d[2] - A12 * i2d[5];
-    double b2 = -A21 * i2d[2] - A22 * i2d[5];
-
-    d2i[0] = A11;
-    d2i[1] = A12;
-    d2i[2] = b1;
-    d2i[3] = A21;
-    d2i[4] = A22;
-    d2i[5] = b2;
-  }
-};
-
-InstanceSegmentMap::InstanceSegmentMap(int width, int height) {
-  this->width = width;
-  this->height = height;
-  checkRuntime(cudaMallocHost(&this->data, width * height));
-}
-
-InstanceSegmentMap::~InstanceSegmentMap() {
-  if (this->data) {
-    checkRuntime(cudaFreeHost(this->data));
-    this->data = nullptr;
-  }
-  this->width = 0;
-  this->height = 0;
-}
-
-class InferImpl : public Infer {
- public:
-  shared_ptr<trt::Infer> trt_;
-  string engine_file_;
-  Type type_;
-  float confidence_threshold_;
-  float nms_threshold_;
-  vector<shared_ptr<trt::Memory<unsigned char>>> preprocess_buffers_;
-  trt::Memory<float> input_buffer_, bbox_predict_, output_boxarray_;
-  trt::Memory<float> segment_predict_;
-  int network_input_width_, network_input_height_;
-  Norm normalize_;
-  vector<int> bbox_head_dims_;
-  vector<int> segment_head_dims_;
-  int num_classes_ = 0;
-  bool has_segment_ = false;
-  bool isdynamic_model_ = false;
-  vector<shared_ptr<trt::Memory<unsigned char>>> box_segment_cache_;
-
-  virtual ~InferImpl() = default;
-
-  void adjust_memory(int batch_size) {
-    // the inference batch_size
-    size_t input_numel = network_input_width_ * network_input_height_ * 3;
-    input_buffer_.gpu(batch_size * input_numel);
-    bbox_predict_.gpu(batch_size * bbox_head_dims_[1] * bbox_head_dims_[2]);
-    output_boxarray_.gpu(batch_size * (32 + MAX_IMAGE_BOXES * NUM_BOX_ELEMENT));
-    output_boxarray_.cpu(batch_size * (32 + MAX_IMAGE_BOXES * NUM_BOX_ELEMENT));
-
-    if (has_segment_)
-      segment_predict_.gpu(batch_size * segment_head_dims_[1] * segment_head_dims_[2] *
-                           segment_head_dims_[3]);
-
-    if ((int)preprocess_buffers_.size() < batch_size) {
-      for (int i = preprocess_buffers_.size(); i < batch_size; ++i)
-        preprocess_buffers_.push_back(make_shared<trt::Memory<unsigned char>>());
-    }
-  }
-
-  void preprocess(int ibatch, const Image &image,
-                  shared_ptr<trt::Memory<unsigned char>> preprocess_buffer, AffineMatrix &affine,
-                  void *stream = nullptr) {
-    affine.compute(make_tuple(image.width, image.height),
-                   make_tuple(network_input_width_, network_input_height_));
-
-    size_t input_numel = network_input_width_ * network_input_height_ * 3;
-    float *input_device = input_buffer_.gpu() + ibatch * input_numel;
-    size_t size_image = image.width * image.height * 3;
-    size_t size_matrix = upbound(sizeof(affine.d2i), 32);
-    uint8_t *gpu_workspace = preprocess_buffer->gpu(size_matrix + size_image);
-    float *affine_matrix_device = (float *)gpu_workspace;
-    uint8_t *image_device = gpu_workspace + size_matrix;
-
-    uint8_t *cpu_workspace = preprocess_buffer->cpu(size_matrix + size_image);
-    float *affine_matrix_host = (float *)cpu_workspace;
-    uint8_t *image_host = cpu_workspace + size_matrix;
-
-    // speed up
-    cudaStream_t stream_ = (cudaStream_t)stream;
-    memcpy(image_host, image.bgrptr, size_image);
-    memcpy(affine_matrix_host, affine.d2i, sizeof(affine.d2i));
-    checkRuntime(
-        cudaMemcpyAsync(image_device, image_host, size_image, cudaMemcpyHostToDevice, stream_));
-    checkRuntime(cudaMemcpyAsync(affine_matrix_device, affine_matrix_host, sizeof(affine.d2i),
-                                 cudaMemcpyHostToDevice, stream_));
-
-    warp_affine_bilinear_and_normalize_plane(image_device, image.width * 3, image.width,
-                                             image.height, input_device, network_input_width_,
-                                             network_input_height_, affine_matrix_device, 114,
-                                             normalize_, stream_);
-  }
-
-  bool load(const string &engine_file, Type type, float confidence_threshold, float nms_threshold) {
-    trt_ = trt::load(engine_file);
-    if (trt_ == nullptr) return false;
-
-    trt_->print();
-
-    this->type_ = type;
-    this->confidence_threshold_ = confidence_threshold;
-    this->nms_threshold_ = nms_threshold;
-
-    auto input_dim = trt_->static_dims(0);
-    bbox_head_dims_ = trt_->static_dims(1);
-    has_segment_ = type == Type::V8Seg;
-    if (has_segment_) {
-      bbox_head_dims_ = trt_->static_dims(2);
-      segment_head_dims_ = trt_->static_dims(1);
-    }
-    network_input_width_ = input_dim[3];
-    network_input_height_ = input_dim[2];
-    isdynamic_model_ = trt_->has_dynamic_dim();
-
-    if (type == Type::V5 || type == Type::V3 || type == Type::V7) {
-      normalize_ = Norm::alpha_beta(1 / 255.0f, 0.0f, ChannelType::SwapRB);
-      num_classes_ = bbox_head_dims_[2] - 5;
-    } else if (type == Type::V8) {
-      normalize_ = Norm::alpha_beta(1 / 255.0f, 0.0f, ChannelType::SwapRB);
-      num_classes_ = bbox_head_dims_[2] - 4;
-    } else if (type == Type::V8Seg) {
-      normalize_ = Norm::alpha_beta(1 / 255.0f, 0.0f, ChannelType::SwapRB);
-      num_classes_ = bbox_head_dims_[2] - 4 - segment_head_dims_[1];
-    } else if (type == Type::X) {
-      // float mean[] = {0.485, 0.456, 0.406};
-      // float std[]  = {0.229, 0.224, 0.225};
-      // normalize_ = Norm::mean_std(mean, std, 1/255.0f, ChannelType::SwapRB);
-      normalize_ = Norm::None();
-      num_classes_ = bbox_head_dims_[2] - 5;
-    } else {
-      INFO("Unsupport type %d", type);
-    }
-    return true;
-  }
-
-  virtual BoxArray forward(const Image &image, void *stream = nullptr) override {
-    auto output = forwards({image}, stream);
-    if (output.empty()) return {};
-    return output[0];
-  }
-
-  virtual vector<BoxArray> forwards(const vector<Image> &images, void *stream = nullptr) override {
-    int num_image = images.size();
-    if (num_image == 0) return {};
-
-    auto input_dims = trt_->static_dims(0);
-    int infer_batch_size = input_dims[0];
-    if (infer_batch_size != num_image) {
-      if (isdynamic_model_) {
-        infer_batch_size = num_image;
-        input_dims[0] = num_image;
-        if (!trt_->set_run_dims(0, input_dims)) return {};
-      } else {
-        if (infer_batch_size < num_image) {
-          INFO(
-              "When using static shape model, number of images[%d] must be "
-              "less than or equal to the maximum batch[%d].",
-              num_image, infer_batch_size);
-          return {};
-        }
-      }
-    }
-    adjust_memory(infer_batch_size);
-
-    vector<AffineMatrix> affine_matrixs(num_image);
-    cudaStream_t stream_ = (cudaStream_t)stream;
-    for (int i = 0; i < num_image; ++i)
-      preprocess(i, images[i], preprocess_buffers_[i], affine_matrixs[i], stream);
-
-    float *bbox_output_device = bbox_predict_.gpu();
-    vector<void *> bindings{input_buffer_.gpu(), bbox_output_device};
-
-    if (has_segment_) {
-      bindings = {input_buffer_.gpu(), segment_predict_.gpu(), bbox_output_device};
-    }
-
-    if (!trt_->forward(bindings, stream)) {
-      INFO("Failed to tensorRT forward.");
-      return {};
-    }
-
-    for (int ib = 0; ib < num_image; ++ib) {
-      float *boxarray_device =
-          output_boxarray_.gpu() + ib * (32 + MAX_IMAGE_BOXES * NUM_BOX_ELEMENT);
-      float *affine_matrix_device = (float *)preprocess_buffers_[ib]->gpu();
-      float *image_based_bbox_output =
-          bbox_output_device + ib * (bbox_head_dims_[1] * bbox_head_dims_[2]);
-      checkRuntime(cudaMemsetAsync(boxarray_device, 0, sizeof(int), stream_));
-      decode_kernel_invoker(image_based_bbox_output, bbox_head_dims_[1], num_classes_,
-                            bbox_head_dims_[2], confidence_threshold_, nms_threshold_,
-                            affine_matrix_device, boxarray_device, MAX_IMAGE_BOXES, type_, stream_);
-    }
-    checkRuntime(cudaMemcpyAsync(output_boxarray_.cpu(), output_boxarray_.gpu(),
-                                 output_boxarray_.gpu_bytes(), cudaMemcpyDeviceToHost, stream_));
-    checkRuntime(cudaStreamSynchronize(stream_));
-
-    vector<BoxArray> arrout(num_image);
-    int imemory = 0;
-    for (int ib = 0; ib < num_image; ++ib) {
-      float *parray = output_boxarray_.cpu() + ib * (32 + MAX_IMAGE_BOXES * NUM_BOX_ELEMENT);
-      int count = min(MAX_IMAGE_BOXES, (int)*parray);
-      BoxArray &output = arrout[ib];
-      output.reserve(count);
-      for (int i = 0; i < count; ++i) {
-        float *pbox = parray + 1 + i * NUM_BOX_ELEMENT;
-        int label = pbox[5];
-        int keepflag = pbox[6];
-        if (keepflag == 1) {
-          Box result_object_box(pbox[0], pbox[1], pbox[2], pbox[3], pbox[4], label);
-          if (has_segment_) {
-            int row_index = pbox[7];
-            int mask_dim = segment_head_dims_[1];
-            float *mask_weights = bbox_output_device +
-                                  (ib * bbox_head_dims_[1] + row_index) * bbox_head_dims_[2] +
-                                  num_classes_ + 4;
-
-            float *mask_head_predict = segment_predict_.gpu();
-            float left, top, right, bottom;
-            float *i2d = affine_matrixs[ib].i2d;
-            affine_project(i2d, pbox[0], pbox[1], &left, &top);
-            affine_project(i2d, pbox[2], pbox[3], &right, &bottom);
-
-            float box_width = right - left;
-            float box_height = bottom - top;
-
-            float scale_to_predict_x = segment_head_dims_[3] / (float)network_input_width_;
-            float scale_to_predict_y = segment_head_dims_[2] / (float)network_input_height_;
-            int mask_out_width = box_width * scale_to_predict_x + 0.5f;
-            int mask_out_height = box_height * scale_to_predict_y + 0.5f;
-
-            if (mask_out_width > 0 && mask_out_height > 0) {
-              if (imemory >= (int)box_segment_cache_.size()) {
-                box_segment_cache_.push_back(std::make_shared<trt::Memory<unsigned char>>());
-              }
-
-              int bytes_of_mask_out = mask_out_width * mask_out_height;
-              auto box_segment_output_memory = box_segment_cache_[imemory];
-              result_object_box.seg =
-                  make_shared<InstanceSegmentMap>(mask_out_width, mask_out_height);
-
-              unsigned char *mask_out_device = box_segment_output_memory->gpu(bytes_of_mask_out);
-              unsigned char *mask_out_host = result_object_box.seg->data;
-              decode_single_mask(left * scale_to_predict_x, top * scale_to_predict_y, mask_weights,
-                                 mask_head_predict + ib * segment_head_dims_[1] *
-                                                         segment_head_dims_[2] *
-                                                         segment_head_dims_[3],
-                                 segment_head_dims_[3], segment_head_dims_[2], mask_out_device,
-                                 mask_dim, mask_out_width, mask_out_height, stream_);
-              checkRuntime(cudaMemcpyAsync(mask_out_host, mask_out_device,
-                                           box_segment_output_memory->gpu_bytes(),
-                                           cudaMemcpyDeviceToHost, stream_));
-            }
-          }
-          output.emplace_back(result_object_box);
-        }
-      }
-    }
-
-    if (has_segment_) checkRuntime(cudaStreamSynchronize(stream_));
-
-    return arrout;
-  }
-};
-
-Infer *loadraw(const std::string &engine_file, Type type, float confidence_threshold,
-               float nms_threshold) {
-  InferImpl *impl = new InferImpl();
-  if (!impl->load(engine_file, type, confidence_threshold, nms_threshold)) {
-    delete impl;
-    impl = nullptr;
-  }
-  return impl;
-}
-
-shared_ptr<Infer> load(const string &engine_file, Type type, float confidence_threshold,
-                       float nms_threshold) {
-  return std::shared_ptr<InferImpl>(
-      (InferImpl *)loadraw(engine_file, type, confidence_threshold, nms_threshold));
-}
-
-std::tuple<uint8_t, uint8_t, uint8_t> hsv2bgr(float h, float s, float v) {
-  const int h_i = static_cast<int>(h * 6);
-  const float f = h * 6 - h_i;
-  const float p = v * (1 - s);
-  const float q = v * (1 - f * s);
-  const float t = v * (1 - (1 - f) * s);
-  float r, g, b;
-  switch (h_i) {
-    case 0:
-      r = v, g = t, b = p;
-      break;
-    case 1:
-      r = q, g = v, b = p;
-      break;
-    case 2:
-      r = p, g = v, b = t;
-      break;
-    case 3:
-      r = p, g = q, b = v;
-      break;
-    case 4:
-      r = t, g = p, b = v;
-      break;
-    case 5:
-      r = v, g = p, b = q;
-      break;
-    default:
-      r = 1, g = 1, b = 1;
-      break;
-  }
-  return make_tuple(static_cast<uint8_t>(b * 255), static_cast<uint8_t>(g * 255),
-                    static_cast<uint8_t>(r * 255));
-}
-
-std::tuple<uint8_t, uint8_t, uint8_t> random_color(int id) {
-  float h_plane = ((((unsigned int)id << 2) ^ 0x937151) % 100) / 100.0f;
-  float s_plane = ((((unsigned int)id << 3) ^ 0x315793) % 100) / 100.0f;
-  return hsv2bgr(h_plane, s_plane, 1);
-}
-
-};  // namespace yolo

+ 0 - 50
src/detection/sign_detection_yolov8/v8_transform.py

@@ -1,50 +0,0 @@
-import onnx
-import onnx.helper as helper
-import sys
-import os
-
-def main():
-
-    if len(sys.argv) < 2:
-        print("Usage:\n python v8_transform.py yolov8n.onnx")
-        return 1
-
-    file = sys.argv[1]
-    if not os.path.exists(file):
-        print(f"Not exist path: {file}")
-        return 1
-
-    prefix, suffix = os.path.splitext(file)
-    dst = prefix + ".transd" + suffix
-
-    model = onnx.load(file)
-    node  = model.graph.node[-1]
-
-    old_output = node.output[0]
-    node.output[0] = "pre_transpose"
-
-    for specout in model.graph.output:
-        if specout.name == old_output:
-            shape0 = specout.type.tensor_type.shape.dim[0]
-            shape1 = specout.type.tensor_type.shape.dim[1]
-            shape2 = specout.type.tensor_type.shape.dim[2]
-            new_out = helper.make_tensor_value_info(
-                specout.name,
-                specout.type.tensor_type.elem_type,
-                [0, 0, 0]
-            )
-            new_out.type.tensor_type.shape.dim[0].CopyFrom(shape0)
-            new_out.type.tensor_type.shape.dim[2].CopyFrom(shape1)
-            new_out.type.tensor_type.shape.dim[1].CopyFrom(shape2)
-            specout.CopyFrom(new_out)
-
-    model.graph.node.append(
-        helper.make_node("Transpose", ["pre_transpose"], [old_output], perm=[0, 2, 1])
-    )
-
-    print(f"Model save to {dst}")
-    onnx.save(model, dst)
-    return 0
-
-if __name__ == "__main__":
-    sys.exit(main())

+ 0 - 12
src/detection/sign_detection_yolov8/yaml/camera.yaml

@@ -1,12 +0,0 @@
-%YAML:1.0
-
-cameraMatrix:
-    rows: 3
-    cols: 3
-    dt: f
-    data: [329.8960137714725, 0.0, 306.98655702722937, 0.0, 329.8476481330821, 147.92102146061933, 0.0, 0.0, 1.0]
-distCoeffs: 
-    rows: 1
-    cols: 4
-    dt: f
-    data: [0.06540082256039308, 0.003679070986049775, 0.02795206257493852, 0.019310323874426313]

+ 0 - 12
src/detection/sign_detection_yolov8/yaml/camera147.yaml

@@ -1,12 +0,0 @@
-%YAML:1.0
-
-cameraMatrix:
-    rows: 3
-    cols: 3
-    dt: f
-    data: [329.8960137714725, 0.0, 306.98655702722937, 0.0, 329.8476481330821, 147.92102146061933, 0.0, 0.0, 1.0]
-distCoeffs: 
-    rows: 1
-    cols: 4
-    dt: f
-    data: [0.06540082256039308, 0.003679070986049775, 0.02795206257493852, 0.019310323874426313]

+ 0 - 12
src/detection/sign_detection_yolov8/yaml/camera_middle_640_360.yaml

@@ -1,12 +0,0 @@
-%YAML:1.0
-
-cameraMatrix:
-    rows: 3
-    cols: 3
-    dt: f
-    data: [380.0899898274016, 0.0, 312.50422695333214,0.0, 378.9971350621845, 158.00203854195047, 0.0, 0.0, 1.0]
-distCoeffs: 
-    rows: 1
-    cols: 5
-    dt: f
-    data: [-0.31123247928669645, 0.14133965413035393, -0.0030934980146547883, -0.0005549080413969106,-0.03447171176210059]

+ 0 - 16
src/detection/sign_detection_yolov8/yaml/init.yaml

@@ -1,16 +0,0 @@
-source:
-- 0
-
-src:
-- [140, 370]
-- [220, 298]
-- [410, 292]
-- [478, 360]
-dst:
-- [125, 371]
-- [125, 218]
-- [484, 218]
-- [484, 370]
-
-meters: 2.0
-pixels: 640

+ 0 - 10
src/detection/sign_detection_yolov8/yaml/pers_ori.yaml

@@ -1,10 +0,0 @@
-%YAML:1.0
-
-
-board_left_top: [267,188]
-
-board_left_bottom: [174,251]
-
-board_right_top: [347,189]
-
-board_right_bottom: [447,257]

+ 0 - 25
src/detection/sign_detection_yolov8/yaml/sign_config.yaml

@@ -1,25 +0,0 @@
-%YAML:1.0
----
-imshow_flag: true
-ivlog_flag: false
-test_video:
-  open: true
-  video_path: /media/nvidia/Elements-lqx/saveVideoPy/1685957551.1323013.avi
-trackstate: true
-conf_thr: 0.4
-nms_thr : 0.4
-model:
-  engine_path: /home/nvidia/liqingxia/model/sign_yolov8m_new_fp16.trt
-camera:
-  calibrationstate : false
-  calibration_yamlpath : ./yaml/camera_middle_640_360.yaml
-  cropstate: true
-  crop_height: 
-    start: 0
-    end: 720
-  crop_width:
-    start: 280
-    end: 1000
-
-
-