#ifndef _YOLO_LAYER_H #define _YOLO_LAYER_H #include #include #include #include #include "NvInfer.h" #include "Utils.h" #include #include "NvInferPlugin.h" struct YoloKernel { int width; int height; int everyYoloAnchors; float anchors[10]; // 一组yolo输出层中 anchors的数据个数 等于 3*2, 可以设置的更大一点,这个无所谓 }; struct alignas(float) Detection{ //x y w h float bbox[4]; float det_confidence; float class_id; float class_confidence; }; namespace nvinfer1 { class YoloLayerPlugin: public IPluginV2IOExt { public: YoloLayerPlugin(const PluginFieldCollection& fc); YoloLayerPlugin(const void* data, size_t length); ~YoloLayerPlugin(); int getNbOutputs() const override { return 1; } Dims getOutputDimensions(int index, const Dims* inputs, int nbInputDims) override; int initialize() override; virtual void terminate() override {}; virtual size_t getWorkspaceSize(int maxBatchSize) const override { return 0;} virtual int enqueue(int batchSize, const void*const * inputs, void** outputs, void* workspace, cudaStream_t stream) override; virtual size_t getSerializationSize() const override; virtual void serialize(void* buffer) const override; bool supportsFormatCombination(int pos, const PluginTensorDesc* inOut, int nbInputs, int nbOutputs) const override { return inOut[pos].format == TensorFormat::kLINEAR && inOut[pos].type == DataType::kFLOAT; } const char* getPluginType() const override; const char* getPluginVersion() const override; void destroy() override; IPluginV2IOExt* clone() const override; void setPluginNamespace(const char* pluginNamespace) override; const char* getPluginNamespace() const override; DataType getOutputDataType(int index, const nvinfer1::DataType* inputTypes, int nbInputs) const override; bool isOutputBroadcastAcrossBatch(int outputIndex, const bool* inputIsBroadcasted, int nbInputs) const override; bool canBroadcastInputAcrossBatch(int inputIndex) const override; void attachToContext( cudnnContext* cudnnContext, cublasContext* cublasContext, IGpuAllocator* gpuAllocator) override; void configurePlugin(const PluginTensorDesc* in, int nbInput, const PluginTensorDesc* out, int nbOutput) override; void detachFromContext() override; private: void forwardGpu(const float *const * inputs,float * output, cudaStream_t stream,int batchSize = 1); int mClassCount; // 检测的目标的类别,从cfg文件获取,在cfg 设置 int mInput_w; // 图像输入的尺寸,从cfg获取 int mInput_h; // 由于umsample层的原因,宽度和高度要想等,TODO 调整 int mNumYoloLayers; // yolo输出层的数量,从cfg获取,无需设置 std::vector mYoloKernel; float mIgnore_thresh = 0.4; // 置信度阈值,可以调整 int max_output_box = 1000; // 最大输出数量 int mThreadCount = 256; // cuda 内核函数,每一block中线程数量 const char* mPluginNamespace; // 该插件名称 }; // 继承与IPluginCreator,重写虚函数 class YoloPluginCreator : public IPluginCreator { public: YoloPluginCreator(); ~YoloPluginCreator() override = default; const char* getPluginName() const override; const char* getPluginVersion() const override; const PluginFieldCollection* getFieldNames() override; // 生成插件,这个是在 build network时调用 IPluginV2IOExt* createPlugin(const char* name, const PluginFieldCollection* fc) override; // 反序列化,在读取保存的trt模型engine时调用,负责解析插件 IPluginV2IOExt* deserializePlugin(const char* name, const void* serialData, size_t serialLength) override; void setPluginNamespace(const char* libNamespace) override{ mNamespace = libNamespace; } const char* getPluginNamespace() const override{ return mNamespace.c_str(); } private: std::string mNamespace; }; }; #endif