123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166 |
- import proto.cameraobjectarray_pb2 as cameraobjectarray_pb2
- import proto.decitionspeedlimit_pb2 as decitionspeedlimit_pb2
- import proto.gpsimu_pb2 as gpsimu_pb2 # 2024.10.14
- import math
- from typing import List
- from datetime import datetime, timedelta
- import time
- class Point2D:
- def __init__(self, x, y,hdg):
- self.mx = x
- self.my = y
- self.mhdg = hdg
- while self.mhdg < 0:
- self.mhdg = self.mhdg + 2.0* math.pi
- while self.mhdg >= 2.0*math.pi:
- self.mhdg = self.mhdg - 2.0* math.pi
-
- def __str__(self):
- return f"Point2D({self.mx}, {self.my})"
- class CameraDecision:
- def __init__(self):
- # 初始化代码...
- self.mendacc = -0.7 #抵达终点时的减速度为-0.7
- self.mmaxwheel = 430 #最大方向盘角度
- self.mdefaultacc = 1.0 #加速时的acc
- self.mspeed = 10.0 #运行速度10km/h
- self.mstopdistoobs = 6.0 #在距离障碍物多远停住
- self.mstopdisacc = -1.0 #有障碍物时的减速度
- self.mvehwidth = 2.3 #从车宽
- pass
- def CalcDecision(self,xobjarray : cameraobjectarray_pb2.cameraobjectarray,xgpsimu: gpsimu_pb2.gpsimu): # 2024.10.14
- realspeed = 3.6 * math.sqrt(math.pow(xgpsimu.vn,2) + math.pow(xgpsimu.ve,2)) #获取当前车速 # 2024.10.14
- nobjsize = len(xobjarray.obj)
- for pobj in xobjarray.obj:
- print(f"type: {pobj.type} x : {pobj.x} y: {pobj.y}"); #获取摄像头感知结果的方法,其它数据可以查看proto文件用pobj.{名称}获取
- acc = 0.0 #加速度数值,m/s2 >0 加速 <0 制动
- wheel = 0.0 #方向盘转角,>0 左转 <0 右转 -430----430
- speed = 0.0 #车速
- leftLamp = False #左转向灯
- rightLamp = False #右转向灯
- ### 在此编写代码给出决策数值
- ### 在此编写代码给出决策数值
- ### 在此编写代码给出决策数值
- xdecisiion = decitionspeedlimit_pb2.decitionspeedlimit()
- xdecisiion.wheelAngle = wheel
- xdecisiion.accelerator = acc
- xdecisiion.brake = 0
- xdecisiion.speed = speed
- xdecisiion.leftLamp = leftLamp
- xdecisiion.rightLamp = rightLamp
- if acc < 0:
- xdecisiion.brake = acc
- xdecisiion.torque = 0
- else:
- xdecisiion.brake = 0
- fVehWeight = 1800
- # fg = 9.8
- fRollForce = 50
- fRatio = 2.5
- fNeed = fRollForce + fVehWeight*acc
- xdecisiion.torque = fNeed/fRatio
- return xdecisiion
-
- def is_point_in_rotated_rectangle(self,x, y, x1, y1, yaw, l, w):
- # 将长方形的左下角坐标转换到原点
- x_rel = x - x1
- y_rel = y - y1
-
- # 计算旋转矩阵(逆时针旋转)
- # | cos(yaw) -sin(yaw) |
- # | sin(yaw) cos(yaw) |
- cos_yaw = math.cos(yaw)
- sin_yaw = math.sin(yaw)
-
- # 应用旋转矩阵到相对坐标
- x_rotated = x_rel * cos_yaw + y_rel * sin_yaw
- y_rotated = -x_rel * sin_yaw + y_rel * cos_yaw
-
- # 判断点是否在旋转后的长方形内
- # 长方形的边界在旋转后的坐标系中是 [-l/2, l/2] x [-w/2, w/2]
- if -l/2 <= x_rotated <= l/2 and -w/2 <= y_rotated <= w/2:
- return True
- else:
- return False
-
- def GaussProj(self,lon,lat):
- iPI = 0.0174532925199433
- ZoneWide = 6
- a = 6378245.0
- f = 1.0 / 298.3
- ProjNo = int(lon / ZoneWide)
- longitude0 = ProjNo * ZoneWide + ZoneWide / 2
- longitude0 = longitude0 * iPI
- latitude0 = 0
- longitude1 = lon * iPI #经度转换为弧度
- latitude1 = lat * iPI #//纬度转换为弧度
- e2 = 2 * f - f * f
- ee = e2 * (1.0 - e2)
- NN = a / math.sqrt(1.0 - e2 * math.sin(latitude1)*math.sin(latitude1))
- T = math.tan(latitude1)*math.tan(latitude1)
- C = ee * math.cos(latitude1)*math.cos(latitude1)
- A = (longitude1 - longitude0)*math.cos(latitude1)
- M = a * ((1 - e2 / 4 - 3 * e2*e2 / 64 - 5 * e2*e2*e2 / 256)*latitude1 - (3 * e2 / 8 + 3 * e2*e2 / 32 + 45 * e2*e2*e2 / 1024)*math.sin(2 * latitude1)+ (15 * e2*e2 / 256 + 45 * e2*e2*e2 / 1024)*math.sin(4 * latitude1) - (35 * e2*e2*e2 / 3072)*math.sin(6 * latitude1))
- xval = NN * (A + (1 - T + C)*A*A*A / 6 + (5 - 18 * T + T * T + 72 * C - 58 * ee)*A*A*A*A*A / 120)
- yval = M + NN * math.tan(latitude1)*(A*A / 2 + (5 - T + 9 * C + 4 * C*C)*A*A*A*A / 24 + (61 - 58 * T + T * T + 600 * C - 330 * ee)*A*A*A*A*A*A / 720)
- X0 = 1000000 * (ProjNo + 1) + 500000
- Y0 = 0
- xval = xval + X0; yval = yval + Y0;
- X = xval
- Y = yval
- return X,Y
-
- def GaussProjInvCal(self,X,Y):
- iPI = 0.0174532925199433 #3.1415926535898/180.0;
- a = 6378245.0
- f = 1.0 / 298.3 # //54年北京坐标系参数
- #////a=6378140.0; f=1/298.257; //80年西安坐标系参数
- ZoneWide = 6 # ////6度带宽
- ProjNo = int(X / 1000000) # //查找带号
- longitude0 = (ProjNo - 1) * ZoneWide + ZoneWide / 2
- longitude0 = longitude0 * iPI # //中央经线
- X0 = ProjNo * 1000000 + 500000
- Y0 = 0
- xval = X - X0; yval = Y - Y0 #//带内大地坐标
- e2 = 2 * f - f * f
- e1 = (1.0 - math.sqrt(1 - e2)) / (1.0 + math.sqrt(1 - e2))
- ee = e2 / (1 - e2)
- M = yval
- u = M / (a*(1 - e2 / 4 - 3 * e2*e2 / 64 - 5 * e2*e2*e2 / 256))
- fai = u + (3 * e1 / 2 - 27 * e1*e1*e1 / 32)*math.sin(2 * u) + (21 * e1*e1 / 16 - 55 * e1*e1*e1*e1 / 32)*math.sin(4 * u)+ (151 * e1*e1*e1 / 96)*math.sin(6 * u) + (1097 * e1*e1*e1*e1 / 512)*math.sin(8 * u)
- C = ee * math.cos(fai)*math.cos(fai)
- T = math.tan(fai)*math.tan(fai)
- NN = a / math.sqrt(1.0 - e2 * math.sin(fai)*math.sin(fai))
- R = a * (1 - e2) / math.sqrt((1 - e2 * math.sin(fai)*math.sin(fai))*(1 - e2 * math.sin(fai)*math.sin(fai))*(1 - e2 * math.sin(fai)*math.sin(fai)))
- D = xval / NN
- #//计算经度(Longitude) 纬度(Latitude)
- longitude1 = longitude0 + (D - (1 + 2 * T + C)*D*D*D / 6 + (5 - 2 * C + 28 * T - 3 * C*C + 8 * ee + 24 * T*T)*D*D*D*D*D / 120) / math.cos(fai)
- latitude1 = fai - (NN*math.tan(fai) / R)*(D*D / 2 - (5 + 3 * T + 10 * C - 4 * C*C - 9 * ee)*D*D*D*D / 24 + (61 + 90 * T + 298 * C + 45 * T*T - 256 * ee - 3 * C*C)*D*D*D*D*D*D / 720)
- #//转换为度 DD
- longitude = longitude1 / iPI
- latitude = latitude1 / iPI
- return longitude,latitude
|